Những câu hỏi liên quan
SS
Xem chi tiết
SS
19 tháng 7 2018 lúc 16:49

Quên chưa viết đề bài

Đề bài là:Tìm x,y

Bình luận (3)
TB
Xem chi tiết
SS
19 tháng 7 2018 lúc 17:00

Bài 1:Tìm x,y biết:

a)\(x^2-6x+y^2+10y+34\)

=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)

=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)

=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

Bình luận (0)
SS
19 tháng 7 2018 lúc 17:01

Còn ý b,c,d,e làm tương tự ý a.

Bình luận (0)
LH
Xem chi tiết
MP
Xem chi tiết
H24
Xem chi tiết
KV
Xem chi tiết
CP
Xem chi tiết
NL
19 tháng 9 2021 lúc 16:29

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
BH
Xem chi tiết
AH
2 tháng 9 2023 lúc 20:33

Lời giải:
Đặt biểu thức trên là $A$

$A=4x^2+4x-12xy-2y+10y^2+8$

$=(4x^2-12xy+9y^2)+4x-2y+y^2+8$

$=(2x-3y)^2+2(2x-3y)+4y+y^2+8$

$=(2x-3y)^2+2(2x-3y)+1+(y^2+4y+4)+3$

$=(2x-3y+1)^2+(y+2)^2+3\geq 0+0+3=3$

Vậy $A_{\min}=3$. Giá trị này đạt tại $2x-3y+1=y+2=0$

$\Leftrightarrow y=-2; x=\frac{-7}{2}$

Bình luận (0)
DN
Xem chi tiết
MT
22 tháng 7 2015 lúc 15:36

 

4x^2+y^2-4x+10y+26=0

<=>4x2-4x+1+y2+10x+25=0

<=>(2x-1)2+(y+5)2=0

<=>2x-1=0 và y+5=0

<=>x=1/2 và y=-5

 

Bình luận (0)