Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NA
Xem chi tiết
AF
Xem chi tiết
FZ
Xem chi tiết
FZ
27 tháng 7 2015 lúc 8:04

Lần này là lần thứ 3 tớ gửi câu này

Bình luận (0)
FZ
Xem chi tiết
FZ
Xem chi tiết
VH
Xem chi tiết
NM
Xem chi tiết
HN
Xem chi tiết
ZZ
24 tháng 7 2020 lúc 22:11

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
ML
24 tháng 11 2016 lúc 20:10

mình nghĩ là làm như vầy, bạn xem thử nha

ta thay p(1)=23 và p(23)=84 lần lượt vào p(x)=ax+b

ta sẽ có: p(1)=1a+b=23

p(23)=23a+b=84

=> -22a =-61 (BẠN GIẢI HỆ PT NHÉ)

=> a=61/22

vì theo đề cho hệ số P(x) nguyên mà a=61/22( không nguyên)

=> không tồn tại một đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84

Bình luận (0)