Những câu hỏi liên quan
PL
Xem chi tiết
TP
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

Bình luận (0)
H24
Xem chi tiết
NP
8 tháng 7 2017 lúc 14:34

Ta có:2x2-4x+10=2x2-4x+2+8

=2(x2-2x+1)+8=2(x-1)2+8.Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\ge0\)

\(\Rightarrow2\left(x-1\right)^2+8\ge8\)\(\Rightarrow\)GTNN của A=8 đạt được khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Bình luận (0)
LD
8 tháng 7 2017 lúc 14:35

Ta có : 2x2 - 4x + 10

= 2(x2 - 2x + 5)

= 2(x2 - 2x + 1 + 4)

= 2[(x - 1)2 + 4 ]

= 2(x - 1)2 + 4

Mà 2(x - 1)2 \(\ge0\forall x\)

Nên : 2(x - 1)2 + 4 \(\ge4\forall x\)

Vậy Amin = 4 , dấu "=" xảy ra khi và chỉ khi x = 1

Bình luận (0)
TM
Xem chi tiết
BD
12 tháng 12 2023 lúc 20:59

 

 

Bình luận (0)
NT
Xem chi tiết
LC
18 tháng 9 2020 lúc 0:42

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
18 tháng 9 2020 lúc 6:23

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 9 2020 lúc 15:07

\(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4>0\forall x\)

\(\Rightarrowđpcm\)

\(B=4x^2+4x+11\)

\(=\left[\left(2x\right)^2+2.2x+1\right]+10\)

\(=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu"="xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=\frac{-1}{2}\)

\(Min_B=10\Leftrightarrow x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
NV
Xem chi tiết
CH
19 tháng 5 2016 lúc 10:42

Ta có: \(A=2x+\sqrt{4x^2-4x+1}\)

\(=2x+\sqrt{\left(2x-1\right)^2}=2x+\left|2x-1\right|\)

TH1: \(x\ge\frac{1}{2}\). Khi đó \(A=2x+2x-1=4x-1\ge4.\frac{1}{2}-1=\frac{7}{2}\)

TH2: \(x< \frac{1}{2}\). Khi đó \(A=2x+1-2x=1\)

Vậy GTNN  của A là 1 với mọi \(x< \frac{1}{2}\)

Chúc em học tập tốt :)

Bình luận (0)
OO
19 tháng 5 2016 lúc 11:01
Ta có:A=\(2x+\sqrt{4x^2-4x+1}\)=2x+\(\sqrt{\left(2x-1\right)^2}=2x+\left|2x-1\right|\)Nếu x\(\ge\frac{1}{2}\) thì A=2x+2x-1=4x-1\(\ge4.\frac{1}{2}-1=1\)Nếu x<\(\frac{1}{2}\) thì A=2x+1-2x=1Vậy GTNN của A=1 với mọi x<\(\frac{1}{2}\)
Bình luận (0)
DN
Xem chi tiết
HG
23 tháng 12 2016 lúc 18:20

D = 2x2 - 4x + 3

= 2(x2 - 2x) + 3

= 2(x2 - 2x + 1) + 1

= 2(x - 1)2 + 1

Có 2(x - 1)2 \(\ge\)0 với mọi x 

=> 2(x - 1)2 + 1 \(\ge\)1 với mọi x

=> D \(\ge\)1 với mọi x

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

KL: Dmin = 1 <=> x = 1

Bình luận (0)
DH
Xem chi tiết
DH
23 tháng 7 2017 lúc 12:19

\(A=x^4-2x^3+3x^2-4x+7\)

\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)

\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)

Vậy \(A_{min}=5\Leftrightarrow x=1\)

Bình luận (0)
GT
Xem chi tiết
NK
26 tháng 11 2015 lúc 22:08

\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)

\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)

Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)

=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)

=>\(A\ge\sqrt{13}\)

Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)

<=>.........

Bình luận (0)
NN
Xem chi tiết
DL
31 tháng 1 2022 lúc 15:21

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

Bình luận (1)
XO
31 tháng 1 2022 lúc 16:11

\(P=\dfrac{4x+1}{x^2+2x+2}=\dfrac{x^2+2x+2-x^2+2x-1}{x^2+2x+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2x+2}\le1\)

"=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy Max P = 1 <=> x = 1

P = \(\dfrac{4x+1}{x^2+2x+2}=\dfrac{-4x^2-8x-8+4x^2+12x+9}{x^2+2x+2}=-4+\dfrac{\left(2x+3\right)^2}{x^2+2x+2}\)

\(\ge-4\)

"=" xảy ra <=> 2x + 3 = 0 <=> x = -1,5

Vậy Min P = -4 <=> x = -1,5

Bình luận (0)