Những câu hỏi liên quan
TL
Xem chi tiết
NL
Xem chi tiết
PV
Xem chi tiết
DT
28 tháng 7 2016 lúc 7:42

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

Bình luận (0)
NA
Xem chi tiết
XO
23 tháng 7 2021 lúc 10:50

Đặt A = \(2x^2-2x+1=2\left(x^2-x+\frac{1}{2}\right)=2\left(x^2-x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

=> Min A = 1/2 

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Min A = 1/2 <=> x = 1/2 

b) Đặt B = \(x^2-x+5=x^2-x+\frac{1}{4}+\frac{19}{4}=\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

=> Min B = 19/4

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Min  B = 19/4 <=> x =1/2

c) Đặt C = \(3x^2-4x+5=3\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=3\left(x-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)

=> Min C = 11/3 

Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3

Vậy Min C = 11/3 <=> x = 2/3

d) Đặt D = \(2x^2+3x+5=2\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)=2\left(x+\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

=> Min D = 31/8

Dấu "=" xảy ra <=> x + 3/4 = 0 <=>  x =-3/4

Vậy Min D = 31/8 <=> x = -3/4

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NT
3 tháng 12 2021 lúc 14:01

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

Bình luận (0)
BV
Xem chi tiết
LB
Xem chi tiết
ST
2 tháng 7 2018 lúc 16:40

a, \(A=x^4-2x^3+2x^2-2x+3\)

\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)

\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)

\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)

\(=\left(x^2+1\right)\left(x-1\right)^2+2\)

Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)

\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x = 1

Vậy Amin = 2 khi x = 1

b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)

đề sai ko

c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra khi x=1

Vậy Cmin = 5 khi x = 1

Bình luận (0)
ST
2 tháng 7 2018 lúc 16:59

2/

+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)

Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)

Dấu "=" xảy ra khi x=y=1/2

Vậy Dmax=7/2 khi x=y=1/2

+) Đề sai

+)bài này là tìm min 

 \(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Gmin=11/4 khi x=3//2

Bình luận (0)
PE
Xem chi tiết
NL
Xem chi tiết
HN
4 tháng 9 2016 lúc 16:36

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

Bình luận (0)
KN
Xem chi tiết
TP
11 tháng 4 2019 lúc 21:48

Bài 1a) 

\(P\left(x\right)=x^{2018}+4x^2+10\)

VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)

\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)

Hay \(P\left(x\right)\ge10\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Bình luận (0)
TP
11 tháng 4 2019 lúc 21:50

Bài 1b)

\(M\left(x\right)=x^2+x+1\)

\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

Bình luận (0)
TP
11 tháng 4 2019 lúc 21:51

Bài 2a)

\(Q\left(x\right)=-x^4-1\)

Vì \(-x^4\le0\forall x\)

\(\Rightarrow-x^4-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Bình luận (0)