Những câu hỏi liên quan
TT
Xem chi tiết
TH
28 tháng 1 2018 lúc 9:56

vì a,b,c>=0 =>a=1;b=0;c=0 hoặc a=0;b=1;c=0 hoặc a=0;b=0;c=1

=>a+2b+c>0 mà 1-1=0 => 4(1-a)(1-b)(1-c)=0

=>a+2b+c>=4(1-a)(1-b)(1-c)

Bình luận (0)
NA
Xem chi tiết
AH
26 tháng 5 2019 lúc 17:07

Lời giải:

Áp dụng BĐT AM-GM:

\(4(1-a)(1-c)\leq (1-a+1-c)^2=(1+b)^2\)

\(\Rightarrow 4(1-a)(1-b)(1-c)\leq (1+b)^2(1-b)(1)\)

Mà:

\(a+2b+c-(1+b)^2(1-b)=1+b-(1+b)(1-b)=(1+b)[1-(1-b^2)]\)

\(=(1+b)b^2>0, \forall b>0\)

\(\Rightarrow a+2b+c> (1+b)^2(1-b)(2)\)

Từ \((1);(2)\Rightarrow a+2b+c> 4(1-a)(1-b)(1-c)\)

Bình luận (0)
H24
Xem chi tiết
ZZ
30 tháng 5 2020 lúc 14:35

đây nha

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 7 2020 lúc 22:11

đâu bạn

Bình luận (0)
 Khách vãng lai đã xóa
RD
Xem chi tiết
RD
11 tháng 10 2018 lúc 22:01

Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi

Bình luận (0)
H24
Xem chi tiết
ZZ
6 tháng 7 2020 lúc 19:26

\(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\left(\frac{a}{1+ab}+\frac{b}{1+bc}+\frac{c}{1+ca}\right)-\left(\frac{ab}{1+ab}+\frac{bc}{1+bc}+\frac{ca}{1+ca}\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{1+ab}+\frac{b}{1+bc}+\frac{c}{1+ca}\right)+\left(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\right)\ge3\)

Đến đây chia làm 2 bài toán :D

\(\frac{a}{1+ab}=a-\frac{a^2b}{1+ab}\ge a-\frac{a^2b}{2\sqrt{ab}}=a-\frac{\sqrt{a^3b}}{2}\)

Tương tự rồi cộng lại:

\(\frac{a}{1+ab}+\frac{b}{1+bc}+\frac{c}{1+ca}\ge a+b+c-\frac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\)

\(\ge a+b+c-\frac{1}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{9}{3+ab+bc+ca}=\frac{9}{3+\frac{\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)

Cộng 2 cái lại có ngay đpcm

Bình luận (0)
 Khách vãng lai đã xóa
WN
Xem chi tiết
VD
11 tháng 2 2018 lúc 19:31

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

Bình luận (0)
PH
Xem chi tiết
KK
Xem chi tiết
NL
28 tháng 9 2020 lúc 19:09

Não đặc-.-

Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek

Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương

Bài làm:

Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)

\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)

\(=1-1=0\)

Dấu "=" xảy ra khi: \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
KK
28 tháng 9 2020 lúc 19:10

Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r

Bình luận (0)
 Khách vãng lai đã xóa
PN
28 tháng 9 2020 lúc 19:25

bài 1 là AM-GM ở vt xong biến đổi tương đương phải không ạ ?

Bình luận (0)
 Khách vãng lai đã xóa
NY
Xem chi tiết
NY
5 tháng 12 2018 lúc 13:20

@Akai Haruma

Bình luận (0)