Những câu hỏi liên quan
KH
Xem chi tiết
AM
10 tháng 7 2018 lúc 18:07

TÌM GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC:

1)  \(x^2+8\)

Gọi biểu thức trên là A.

Nhận xét;  \(x^2\ge0\forall x\)

\(\Rightarrow x^2+8\ge8\forall x\)

Vậy  \(minA=8\) khi  \(x^2=0\)\(\Rightarrow x=0\)

KL: Vậy \(minA=8\) khi  \(x=0\)

2)  \(2x^2+4x+15\)

\(\Rightarrow2x^2+4x+1+14\)

\(\Rightarrow\left(2x^2+1\right)^2+14\)

Gọi biểu thức trên là B.

Nhận xét: \(\left(2x^2+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x^2+1\right)^2+14\ge14\forall x\)

Vậy  \(minB=14\) khi \(\left(2x^2+1\right)^2=0\)\(\Rightarrow2x^2+1=0\)\(\Rightarrow2x^2=1\)\(\Rightarrow x=\sqrt{\frac{1}{2}}\)

KL: Vậy  \(minB=14\) khi  \(x=\sqrt{\frac{1}{2}}\)

Bình luận (0)
TD
10 tháng 7 2018 lúc 21:16

Tìm giá trị nhỏ nhất của biểu thức bạn AKIWA MAIYA  làm rồi . 

 Chứng minh biểu thức luôn âm với mọi x

a) \(-x^2+2x-7\)

\(=-\left(x^2-2x+7\right)\)

\(=-\left(x^2-2.x.1+1^2+7\right)\)

\(=-\left[\left(x-1\right)^2+7\right]\)

Vì \(-\left[\left(x-1\right)^2+7\right]< 0\)

=> Biểu thức trên nhận giá trị âm với mọi x .

b) Tương tự

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 7 2022 lúc 22:05

Bài 2:

a: \(A=x^2+8>=8\)

Dấu '=' xảy rakhi x=0

b: \(B=2\left(x^2+2x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{13}{2}\right)=2\left(x+1\right)^2+13>=13\)

Dấu '=' xảy ra khi x=-1

Bình luận (0)
KH
Xem chi tiết
AM
11 tháng 7 2018 lúc 7:03

Gọi biểu thức là A.

\(A=-5x^2+20x-49\)

\(A=-5x^2+20x-2-47\)

\(A=-\left(5x^2-20x+2\right)-47\)

\(A=-\left(5x-2\right)^2-47\)

Nhận xét:   \(-\left(5x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(5x-2\right)^2-47\le-47\forall x\)

Vậy biểu thức trên luôn âm với mọi x.

Bình luận (0)
HS
Xem chi tiết
LD
5 tháng 7 2017 lúc 19:20

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

Bình luận (0)
LD
5 tháng 7 2017 lúc 19:24

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2

Bình luận (0)
LD
Xem chi tiết
TT
Xem chi tiết
NT
1 tháng 7 2019 lúc 14:44

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

Bình luận (0)
TT
2 tháng 7 2019 lúc 15:35

giải hết i

Bình luận (0)
NT
Xem chi tiết
MN
5 tháng 7 2019 lúc 8:41

mk nghĩ đề đúng của câu a phải là \(8x^2\left(2x-3\right)-4x\left(4x^2-6x+1\right)+4\left(x-3\right)\)

nhân tung ra rồi rút gọn lại là xong kết quả của phép tính là \(-12\)không chứa ẩn x nên bt trên ko phụ thuộc vào biến

bài b tương tự

\(\frac{1}{2}x\left(10x^3-8x^2+4x-2\right)-5x\left(x^3-\frac{4}{5}x^2+\frac{2}{5}x-\frac{1}{5}\right)+7\)

\(=5x^4-4x^3+2x^2-x-5x^4+4x^3-2x^2+x+7\)

\(=7\)

Vậy bt trên ko phụ thuộc vào biến.

Làm hơi tắt tí thông cảm nha!

Bình luận (0)
KJ
Xem chi tiết
NT
28 tháng 5 2022 lúc 20:34

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

Bình luận (0)
KH
Xem chi tiết