Những câu hỏi liên quan
LC
Xem chi tiết
NT
19 tháng 7 2022 lúc 13:19

\(3x^2+1\ge1>0\forall x\)

Bình luận (0)
HH
Xem chi tiết
TG
25 tháng 7 2021 lúc 20:28

undefined

Bình luận (0)
NT
25 tháng 7 2021 lúc 20:33

Ta có: \(-x^2-3x-4\)

\(=-\left(x^2+3x+4\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\right)\)

\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{7}{4}< 0\forall x\)

Bình luận (0)
KN
Xem chi tiết
HH
Xem chi tiết
NH
Xem chi tiết
HH
18 tháng 2 2021 lúc 12:25

\(pt:\left(-x^2+3x-2\right)m+3x-5=0\)

\(\Leftrightarrow-x^2m+3mx-2m+3x-5=0\)

\(\Leftrightarrow-x^2m+\left(3m+3\right)x-2m-5=0\)

pt co nghiem \(\Leftrightarrow\Delta=\left(3m+3\right)^2-4m\left(2m+5\right)\ge0\)

\(\Leftrightarrow9m^2+18m+9-8m^2-20m\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+8>0\left(ld\right)\)

Vay pt luon co nghiem voi moi m

 

Bình luận (0)
TQ
Xem chi tiết
KN
Xem chi tiết
PA
23 tháng 7 2019 lúc 9:06

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

Bình luận (0)
LT
Xem chi tiết
DT
3 tháng 7 2016 lúc 21:01

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

Bình luận (0)
MP
Xem chi tiết
TC
5 tháng 8 2021 lúc 9:50

undefined

Bình luận (0)