n^2 + 8n +17 ko chia hết cho n+4
Tìm n thuộc N
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm n thuộc n để:
a) 8n+5 chia hết cho 6n-1
b) n2 +19 chia hết cho n-5
c) n +17 chia hết cho n2 + 2
Tìm n thuộc n để:
a) 8n+5 chia hết cho 6n-1
b) n2 +19 chia hết cho n-5
c) n +17 chia hết cho n2 + 2
a) Ta có: 8n+5 chia hết cho 6n-1
=>3.(8n+5) chia hết cho 6n-1( mình tìm BCNN(8,6)=24 rồi tính nhé)
Ta có: 6n-1 chia hết cho 6n-1
=> 4.(6n-1) chia hết cho 6n-1
=>3.(8n+5)-4.(6n-1) chia hết cho 6n-1
(24n+15)-(24n-4) chia hết cho 6n -1
11 chia hết cho 6n+1
=>6n-1 thuộc {1;11}
Mà n thuộc N => 6n-1 = 11
6n = 12
=>n=2
Vậy n=2
b) Tương tự vậy nha bạn. ( n-5)2 chia hết cho n-5
Các bước còn lại tương tự n= 6
c) cũng tương tự như vậy. Ta có kết quả n=1
Tìm n thuộc n để:
a) 8n+5 chia hết cho 6n-1
b) n2 +19 chia hết cho n-5
c) n +17 chia hết cho n2 + 2
Tìm n thuộc N để
a) (8n-5) chia hết cho (2n+1)
b) (12n+-17) chia hết cho (3n-2)
a) (8n+4) -9 chia hết cho 2n-1
=> 9chia hết cho 2n-1
> thuộc ứoc của 9 => -5;-1;-2;0;1;4
b) (12n-8)-9 chi hết cho 3n-2
=> 9 chia hết cho 3n-2
=> n = 1
Vinh Nguyễn ơi, n thuộc N thì sao lại có số âm được.
CMR với mọi số tự nhiên n:
a) n2+8n+17 ko chia hết cho (N+4)
b)n2+7n-40 ko chia hết cho 121
c)n3+6n2+11n+7 ko chia hết cho ((n+1):(n+2)) và (n+3)
a) c/m: (5n+7)(4n+6) chia hết cho 2 (n thuộc N)
b) Chứng minh : (8n+1)(6n+5) ko chia hết cho 2 (n thuộc N)
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
Tìm n thuộc N
1. n+7 chia hết cho n-2
2. 46-2n chia hết cho n
3. 3n+15 chia hết cho n+1
4. 8n-7 chia hết cho 4n +1
5.n2+2n+6 chia hết cho n+2
6. n2+2n+6 chia hết cho n+4
7. 7n chia hết cho n-3
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
Tìm n thuộc N* để:
a) n+10 chia hết cho 2n + 1
b) n+19 chia hết cho 9-n
c) n2 + 23 chia hết cho n-2
d) n+4 chia hết cho n2 -1
e) 12n + 5 chia hết cho 8n-1