Những câu hỏi liên quan
XT
Xem chi tiết
XT
10 tháng 11 2017 lúc 20:14

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
LD
15 tháng 10 2020 lúc 17:36

Ta có :

Nghiệm của x2 + x - 2 là x = 1 và x = -2

=> Để x3 + ax + b chia hết cho x2 + x - 2

thì x3 + ax + b cũng nhận x = 1 và x = -2 làm nghiệm

+) Với x = 1

Thế vào x3 + ax + b ta được 

13 + a.1 + b = 0

=> 1 + a + b = 0

=> a + b = -1 (1)

+) Với x = -2 

Thế vào x3 + ax + b ta được

(-2)3 + a.(-2) + b = 0

<=> -8 - 2a + b = 0

<=> -8 = 2a - b (2)

Từ (1) và (2) => \(\hept{\begin{cases}a+b=-1\\2a-b=-8\end{cases}}\)

Lấy (1) cộng (2) theo vế => 3a = -9 => a = -3

Thế a = -3 vào (1) => -3 + b = -1 => b = 2

Vậy \(\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
15 tháng 10 2020 lúc 17:42

Hoặc là dùng cách này

Ta có : x3 + ax + b có bậc 3

           x2 + x - 2 có bậc là 2

=> Thương là một đa thức bậc 1

Giả sử đa thức thương đó là x + c + d

=> x3 + ax + b chia hết cho x2 + x - 2

khi và chỉ khi  x3 + ax + b = ( x2 + x - 2 )( x + c + d )

                <=> x3 + ax + b = x3 + cx2 + dx2 + x2 + cx + dx - 2x - 2c - 2d

                <=> x3 + ax + b = x3 + x2( c + d + 1 ) + x( c + d - 2 ) - ( 2c + 2d )

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}c+d+1=0\\c+d-2=a\\2c+2d=-b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

Vậy a = -3 ; b = 2

Bình luận (0)
 Khách vãng lai đã xóa
TN
15 tháng 11 2020 lúc 21:01

Chử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh Hiển

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
DK
8 tháng 10 2015 lúc 23:55

Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)

sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1

ta có x4+ax+b = (x2-1)(x2+cx+d)

=>x4+ax+b=x4+cx3+dx2-x2-cx-d

Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)

x=x=> 0

0x=cx3 => c=0

0x2=(d-1)x2  => d-1 = 0 ( lấy x2 chung)

ax=-cx => a=-c

b=-d

Từ những điều trên ta kết luận 

a=0 (a=-c mà c=0)

b=1 (b=-d mà d=1)

 

 

Bình luận (0)
KT
Xem chi tiết
NK
Xem chi tiết
LD
25 tháng 8 2021 lúc 9:46

Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1

Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )

=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d

<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d

Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)

Vậy a = b = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 8 2021 lúc 9:47

x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1). 
để x^4+ax^2+1 chia hết cho x^2+x+1 
thì số dư =0 
<=> (a-1)(x-1) =0 
<=> a=1

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
VT
26 tháng 9 2016 lúc 9:30

a ) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)

\(f\left(x\right)=x^4+ax+b\)

Theo định lí bơ zu 

\(\Rightarrow f\left(2\right)=16+2b+b=0\)

\(\Leftrightarrow2a+b=-16\) ( 1 )

\(\Rightarrow f\left(-2\right)=16-2a+b=0\)

\(\Leftrightarrow-2a+b=-16\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Leftrightarrow a=0;b=-16\)

 

Bình luận (1)
SM
Xem chi tiết
LC
16 tháng 11 2019 lúc 20:49

x^4 +ax+b x^2+1 x^2-1 x^4-x^2 - x^2+ax+b x^2 -1 - ax+b+1

Để \(x^4+ax+b\)chia hết cho \(x^2-1\)

\(\Leftrightarrow ax+b+1=0\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}}\)

Vay ...

Bình luận (0)
 Khách vãng lai đã xóa
KN
17 tháng 11 2019 lúc 19:13

Đa thức \(x^2-1\)có nghiệm\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)

TH1: x = 1\(\Rightarrow1+a+b=0\Leftrightarrow a+b=-1\)

TH2: x = - 1\(\Rightarrow1-a+b=0\Leftrightarrow a-b=1\)

Có hệ\(\hept{\begin{cases}a+b=-1\\a-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}\)

Vậy a = 0; b = -1 thì \(x^4+ax+b\)chia hết cho đa thức x2 -1

Bình luận (0)
 Khách vãng lai đã xóa