chung minh 8x - 4x^2 -5 <0 voi moi x
chứng minh phương trình
a) \(x^5-5x^3+4x-1=0\) có đúng 5 nghiệm
b) \(4x^3-8x^2+1=0\) có nghiệm thuộc khoảng (-1;2)
a: Đặt \(A\left(x\right)=x^5-5x^3+4x-1\)
Vì A(x) là đa thức bậc 5 nên A(x) có tối đa 5 nghiệm(*)
\(A\left(-2\right)=\left(-2\right)^5-5\cdot\left(-2\right)^3+4\cdot\left(-2\right)-1=-1\)
\(A\left(-1,5\right)=\left(-1,5\right)^5-5\cdot\left(-1,5\right)^3+4\cdot\left(-1,5\right)-1=\dfrac{73}{32}\)
\(A\left(1\right)=1^5-5\cdot1^3+4\cdot1-1=-1\)
Vì \(A\left(-2\right)\cdot A\left(-1,5\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (-2;-1,5)(1)
Vì \(A\left(-1,5\right)\cdot A\left(1\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (-1,5;1)(2)
\(A\left(0\right)=0^5-5\cdot0^3+4\cdot0-1=-1\)
\(A\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5-5\cdot\left(\dfrac{1}{2}\right)^3+4\cdot\dfrac{1}{2}-1=\dfrac{13}{32}\)
\(A\left(1\right)=1^5-5\cdot1^3+4\cdot1-1=-1\)
Vì \(A\left(0\right)\cdot A\left(\dfrac{1}{2}\right)< 0\)
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (0;1/2)(3)
Vì A(1/2)*A(1)<0
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (1/2;1)(4)
\(A\left(2\right)=2^5-5\cdot2^3+4\cdot2-1=-1\)
\(A\left(3\right)=3^5-5\cdot3^3+4\cdot3-1=119\)
Vì A(2)*A(3)<0
nên phương trình A(x)=0 có một nghiệm thuộc đoạn (2;3)(5)
Từ (1),(2),(3),(4),(5) suy ra A(x) có ít nhất 5 nghiệm
Kết hợp với cả (*), ta được: A(x) có đúng 5 nghiệm
b: Đặt \(B\left(x\right)=4x^3-8x^2+1\)
\(B\left(-0,5\right)=4\cdot\left(-0,5\right)^3-8\cdot\left(-0,5\right)^2+1=-1,5\)
\(B\left(0\right)=4\cdot0^3-8\cdot0^2+1=1\)
Vì \(B\left(-0,5\right)\cdot B\left(0\right)< 0\)
nên phương trình B(x)=0 có một nghiệm thuộc (-0,5;0)
=>Phương trình \(4x^3-8x^2+1=0\) có nghiệm thuộc (-1;2)
chứng minh rằng với mọi x ϵ R
x^2-8x+17>0
x^2+4x+5>0
x^2-x+1>0
-x^2-4x-5<0
-x^2-3x-4<0
-x^2+10x-27<0
Chứng minh biểu thức sau:
A=(2x+1).(x-1)-2x.(x+2)-5.(-x+3)+4
B=(4x+3).(2x-5)-(8x+1).(x+3)+13.(3x+1)+2
C=(4x+5).(4x-5)-(2x+3).(8x-4)-8.(-2x+1)+3
MÌNH ĐANG CẦN GẤP BẠN NÀO LÀM XONG NHANH NHẤT MÌNH SẼ TICK NGAY Ạ
Đề bài mình viết thiếu là CM biểu thức sau không phụ thuộc vào x ( nghĩa là kết quả phải ra số tự nhiên không có x )
\(A=\left(2x+1\right)\left(x-1\right)-2x\left(x+2\right)-5\left(-x+3\right)+4\)
\(=2x^2-2x+x-1-2x^2-4x+5x-15+4\)
\(=-12\left(đpcm\right)\)
\(B=\left(4x+3\right)\left(2x-5\right)-\left(8x+1\right)\left(x+3\right)+13\left(3x+1\right)+2\)
\(=8x^2-20x+6x-15-\left(8x^2+24x+x+3\right)+39x+13+2\)
\(=-3\left(đpcm\right)\)
chứng minh biểu thức sau luôn âm hoặc dương
4x^2-8x+5
\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)
\(4x^2-8x+5\)
\(=\left(2x\right)^2-2×2×2x+1+4\)
\(=\left(2x-1\right)^2+1\)
\(\Rightarrow\left(2x-1\right)^2+1>0\)
Vậy biểu thức trên luôn dương !!!
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\) ( ĐKXĐ: \(x\ne0;x\ne2\) )
\(\Leftrightarrow\dfrac{x-1}{2x\left(x-2\right)}-\dfrac{7}{8x}=\dfrac{5-x}{4x\left(x-2\right)}-\dfrac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)4}{8x\left(x-2\right)}-\dfrac{7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{2\left(5-x\right)}{8x\left(x-2\right)}-\dfrac{1x}{8x\left(x-2\right)}\)
\(\Rightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow-3x+2x+x=10+4-14\)
\(\Leftrightarrow0=0\)
Vậy pt đã cho có nghiệm đúng với mọi x
1, Tìm X,..
a,4/5.x/-1=5/4
5/9-1/3x=1/2
3/4x-1/4x+7/2=-5/4
5/8+1/8x=-1/2
giup minh voi a
giải phương trình: x-1/2x^2-4x - 7/8x = 5-x/4x^2-8x - 1/8x-16
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)
Chứng minh rằng
1) x^2-4x+5>0
2) -x^2+8x-17<0
1)
Ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x+2\right)^2+1\ge1>0\left(đpcm\right)\)
2)
Ta có:\(-x^2+8x-17=-x^2+8x-16-1=-\left(x^2-8x+16\right)-1=-\left(x-4\right)^2-1\le-1< 0\)
Giải phương trình :\(\sqrt{4x^2+4x+5}+\sqrt{8x^2+8x+11}=4-4x^2-4x\)
Lời giải:
ĐK:.......
Đặt $4x^2+4x+5=a\Rightarrow 8x^2+8x+11=2a+1; 4-4x^2-4x=9-a$
PT trở thành:
$\sqrt{a}+\sqrt{2a+1}=9-a\Leftrightarrow \sqrt{a}-2+\sqrt{2a+1}-3+(a-4)=0$
$\Leftrightarrow \frac{a-4}{\sqrt{a}+2}+\frac{2(a-4)}{\sqrt{2a+1}+3}+(a-4)=0$
$\Leftrightarrow (a-4)\left(\frac{1}{\sqrt{a}+2}+\frac{2}{\sqrt{2a+1}+3}+1\right)=0$
Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$ nên $a-4=0$
$\Rightarrow a=4$
$\Leftrightarrow 4x^2+4x+5=4$
$\Leftrightarrow 4x^2+4x+1=0\Leftrightarrow (2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$