giải phương trình : \(x^4+\sqrt{x^2+2014}=2014\)
Giải phương trình \(x^4+\sqrt{x^2+2014}=2014\)
giải phương trình:
\(x^4+\sqrt{x^2+2014}=2014\)
đặt a = x^2
b = -căn(x^2 + 2014)
=> a^2 - b = 2014
và :b^2 = a+2014
=> (a-b).(a+b+1) = 0
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
giải phương trình :
\(\sqrt{x+3}x^4=2x^4-2014x+2014\)
\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2014\left(x-1\right)=0\)
\(\Leftrightarrow x^4\cdot\frac{x-1}{\sqrt{x+3}+2}+2014\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2014\right)=0\)
Dễ thấy \(\left(\frac{x^4}{\sqrt{x+3}+2}+2014\right)\ne0\)
\(\Rightarrow x=1\)
Học tốt
giải phương trình \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2003}-\sqrt[3]{x+1}\)
Giải phương trình : \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
Giải phương trình: \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
Giải phương trình
| x-2|^2014 + |x-3|^2014 = 1
Giải phương trình
\(\sqrt{x+123234048-22012\sqrt{x+2102012}}+\sqrt{x+103426368-20132\sqrt{x+2102012}}\)
=2014
\(\sqrt{x+123234048-22012\sqrt{x+2102012}}\)
\(=\sqrt{x+2102012-2.11006\sqrt{x+2102012}+121132036}\)
\(=\sqrt{\left(\sqrt{x+2102012}-11006\right)^2}\)
\(=\left|\sqrt{x+2102012}-11006\right|\)
\(\sqrt{x+103426368-20132\sqrt{x+2102012}}\)
\(=\sqrt{x+2102012-2.10066.\sqrt{x+2102012}+101324356}\)
\(=\sqrt{\left(\sqrt{x+2102012}-10066\right)^2}\)
\(=\left|\sqrt{x+2102012}-10066\right|\)
Bạn thế vào pt rồi chia trường hợp