Những câu hỏi liên quan
HH
Xem chi tiết
BL
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết
HP
9 tháng 5 2016 lúc 20:40

Tổng quát: \(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right).a}-\frac{1}{a\left(a+1\right)}\)

Ta có: \(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+.....+\frac{2}{2013.2014.2015}\)

\(S=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+.....+\left(\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)

\(S=\frac{1}{1.2}-\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{2014.2015}<\frac{1}{2}\)

Vậy....................

Bình luận (0)
LP
6 tháng 5 2016 lúc 18:39

S=(2/1.2-2/2.3)+(2/2.3-2/3.4)+(2/3.4-2/4.5)+...........+(2/2013.2014-2/2014-2/2015)

S=(2/1.2-2/2014.2015):2

S=1-2/2014.2/2015

--> S>1/2

Bình luận (0)
DH
9 tháng 5 2016 lúc 20:09

giải thích hộ chả hiểu

Bình luận (0)
PL
Xem chi tiết
AK
17 tháng 4 2018 lúc 17:28

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2014.2015}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)\)

\(S=\frac{1}{2}.\left(\frac{2029105}{4058210}-\frac{1}{4058210}\right)\)

\(S=\frac{1}{2}.\frac{2029104}{4058210}\)

\(S=\frac{1014552}{4058210}\)

Chúc bạn học tốt !!! 

Bình luận (0)
AK
17 tháng 4 2018 lúc 17:29

Công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

Bình luận (0)
PL
20 tháng 4 2018 lúc 16:03

có cái gì sai sai đúng ko bạn 

Bình luận (0)
AM
Xem chi tiết
ND
22 tháng 11 2015 lúc 6:47

\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)x=\frac{1}{3}\left(2014.2015.2016-2013.2014.2015........+2.3.4-1.2.3+1.2.3-0.1.2\right)\)

\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)

\(x=\frac{1}{3.2029104}.2014^2.2015^2.2016=\)

\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)

Bình luận (0)
TT
22 tháng 11 2015 lúc 6:39

vào câu hỏi tương tự nha bạn

Bình luận (0)
DH
Xem chi tiết
SL
27 tháng 9 2015 lúc 17:04

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2013.2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)=\frac{1}{2}.\frac{2029104}{4058210}=\frac{1014552}{4058210}\)

Bình luận (0)
NT
27 tháng 9 2015 lúc 16:56

bài thi cấp huyện của trường TH Quỳnh Bá

Bình luận (0)
HN
Xem chi tiết
SG
29 tháng 11 2016 lúc 23:07

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

Bình luận (0)
LP
Xem chi tiết
PT
6 tháng 4 2021 lúc 20:24

Chắc thế!

Bình luận (0)
NT
6 tháng 4 2021 lúc 20:28

Ta có: \(S=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+97\cdot98\cdot99\)

\(\Leftrightarrow4\cdot S=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+...+97\cdot98\cdot99\cdot\left(101-97\right)\)

\(\Leftrightarrow4\cdot S=98\cdot99\cdot100\cdot101\)

\(\Leftrightarrow S=\text{24497550}\)

Bình luận (0)