Cho a,c,b dương t/m a+b+c+ab+bc+ac = 6abc
CM: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
Với a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc cm \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
Bài 1:
a , Cho a , b là các số dương . C/m: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)
b, Cho a , b , c là các số dương thoả mãn a+b+c+ab+bc+ca=6abc
C/m: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
Bài 2:a, Cho a, b ,c là các số thực không âm thỏa mãn a+b+c=1
C/m: \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
b,C/m: \(\dfrac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+2c\right)}+\sqrt{c\left(c+2a\right)}}\ge\dfrac{1}{2}\)
Bài 3: Cho a , b, c> 0 thỏa mãn abc=1. Tìm max của:
\(P=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)
1) Áp dụng bđt Cauchy:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)
Xong
cho 3 số dương a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\) . Cmr
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}+\dfrac{ab+ac+bc}{2}\ge3\)
Cho 3 số a, b, c. Biết \(a+b+c+ab+bc+ca=6abc\). CMR: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
Ta có a,b,c dương⇒\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\dfrac{1}{cb}+\dfrac{1}{ac}+\dfrac{1}{ab}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=6\)(1)
Đặt x=\(\dfrac{1}{a}\),y=\(\dfrac{1}{b}\),z=\(\dfrac{1}{c}\)
Vậy (1)\(\Leftrightarrow xy+xz+yz+x+y+z=6\)
Áp dụng bđt cosi ta có
\(x^2+1\ge2x\)(2)
\(y^2+1\ge2y\)(3)
\(z^2+1\ge2z\)(4)
Cộng (2),(3),(4)\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)(5)
Ta lại có bất đẳng thức cosi:
\(x^2+y^2\ge2xy\)(6)
\(y^2+z^2\ge2yz\)(7)
\(x^2+z^2\ge2xz\)(8)
Cộng (6),(7),(8)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2xy+2xz+2yz\left(9\right)\)
Cộng (8),(9)\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2.6\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\Rightarrowđpcm\)
a,b,c dương mình mới làm được
Cho 3 số a, b, c. Biết \(a+b+c+ab+bc+ca=6abc\). CMR: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
a, b, c khác 0 nhé
\(a+b+c+ab+bc+ca=6abcd\)
Chia cả hai vế cho abc ta có
\(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=6\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\), x, y, z khác 0
bài toán đưa về cho 3 số x, y, z khác 0 chứng minh x+y+z+xy+yz+xz=6 Chứng minh rằng x^2+y^2+z^2>=3
Xét 3(x^2+y^2+z^2)- 2(x+y+z+xy+xz+yz) +3=(x^2-2xy+y^2)+(x^2-2xz+z^2)+(z^2-2zy+y^2)+(x^2-2x+1)+(y^2-2y+1)+(z^2-2z+1)
=(x-y)^2+(x-z)^2+(z-y)^2+(x-1)^2+(y-1)^2+(z-1)^2\(\ge\)0
=> 3(x^2+y^2+z^2)- 2(x+y+z+xy+xz+yz) +3\(\ge0\)=> 3.(x^2+y^2+z^2)-2.6+3\(\ge0\)<=> x^2+y^2+z^2\(\ge\)3 (điều phải chứng minh)
Dấu '=" xảy ra khi và chỉ khi x=y=z=1
\(\ge0\)\(\ge\)\(\ge\)
Cho a,c,b dương t/m a+b+c+ab+bc+ac = 6abc
CM : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)
Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)
\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)
Chúc bạn học tốt !!!
cho a,b,c là các số dương thỏa mãn điều kiện \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)
Chứng minh rằng: \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ac\right)\ge3\)
Cho a,b,c là các số thực dương thoả mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)Chứng minh rằng \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ca\right)\ge3\)
Đặt\(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2+}+\dfrac{1}{2}\left(ab+bc+ca\right)\)
Bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) (1)
Chứng minh bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\sqrt[3]{abc.\dfrac{1}{abc}}=9\left(\forall a,b,c\ge0\right)\)
Kết hợp điều kiện đề bài ta được: \(a+b+c\ge3\)
Ta có: \(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2\sqrt{b^2}}=\dfrac{ab}{2}\) ( AM-GM cho 2 số không âm 1 và b^2 )
\(\Rightarrow\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\left(1\right)\)
Chứng minh hoàn toàn tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2}\left(2\right)\)
\(\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế thu được: \(P\ge a+b+c=3\)
Dấu "=" xảy ra tại a=b=c=1
1)Cho 3 số a,b,c dương thỏa mãn ab+bc+ca=3abc.
tìm Max \(\dfrac{11a+4b}{4a^2-ab+2b^2}+\dfrac{11b+4c}{4b^2-bc+2c^2}+\dfrac{11c+4a}{4c^2-ca+2a^2}\)
2) cho a,b,c là các số dương thỏa mãn abc=1.CMR
\(\dfrac{1}{a^5+b^2+c^2}+\dfrac{1}{a^2+b^5+c^2}+\dfrac{1}{a^2+b^2+c^5}\le\dfrac{3}{a^2+b^2+c^2}\)
3) cho a,b,c>0 thỏa mãn a+b+c=3abc.CMR
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\)
Bài 1:
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)
Ta sẽ chứng minh nó là GTLN
Thật vậy ta cần chứng minh
\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)
\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng theo vế ta có:
\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)
Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng
Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3:
Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là
\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:
\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)
Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)
\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)
\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM
Đẳng thức xảy ra khi \(a=b=c=1\)
T/b:Vâng, rất giỏi
lần sau đăng từng câu 1 dc ko bn :)