Cho n thuộc N chứng tỏ rằng :
14n+3/21n+5là phân số tối giản
Giúp mình với nhé bạn thanks
chứng tỏ B=\(\dfrac{14n+3}{21n+5}\)(n ϵ N) là phân số tối giản😁
giúp mình nhé!!!
Gọi d=ƯCLN(14n+3;21n+5)
=>42n+9-42n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Gọi ƯCLN (14n + 3 ; 21n + 5) = d
=> 14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d
21n + 5 chia hết cho d => 2(21n + 5) chia hết cho d
=>2(21n + 5) - 3(14n + 3) chia hết cho d
=> (42n + 10) - (42n + 9) chia hết cho d
=> d = ±1
Cho n thuộc N, Chứng tỏ rằng phân số 14n+3/21n+5 là phân số tối giản.
Đặt \(\left(14n+3,21n+5\right)=d\).
Suy ra
\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Cho n thuộc N. Chứng tỏ rằng phân số: 14n+3/21n+5 là phân số tối giản
Gọi d = ƯCLN ( 14n + 3 , 21n + 5 )
Xét hiệu :
\(\left(21n+5\right)-\left(14n+3\right)⋮d\)
\(2\left(21n+5\right)-3\left(14+3\right)⋮d\)
\(42n+10-42n-9⋮d\)
\(10-9⋮d\)
\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)
Vậy....
#Louis
Chứng tỏ 21n+4/14n+3 là phân số tối giản với mọi số tự nhiên n
Giải chi tiết cho mình nhé, mình xin các bạn đấy, mình sẽ cho 3 tick
Để cm 21n+4/14n+3 tối giản thì ta phải cm 21n + 4 ;2n + 3 là nguyên tố cùng nhau
Ta gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )
=> 21n + 4 ⋮ d => 2.( 21n + 4 ) ⋮ d => 42n + 8 ⋮ d ( 1 )
=> 14n + 3 ⋮ d => 3.( 14n + 3 ) ⋮ d => 42n + 9 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 42n + 9 ) - ( 42n + 8 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 21n + 4 ; 12n + 3 ) = 1 nên 21n + 4 và 12n + 1 là nguyên tố cùng nhau
=> 21n+4/14n+3 là p/s tối giản
giả sử (21n+4)/(14n+3) là phân số không tối giản
=> tồn tại d > 1 là ước số chung của (21n+4) và 14n+3)
hay (21n+4) và 14n+3) cùng chia hết cho d > 1
=> 3(14n +3) - 2(21n + 4) = 1 chia hết cho d > 1 vô lý
=> đpcm
giả sử (21n+4)/(14n+3) là phân số không tối giản
=> tồn tại d > 1 là ước số chung của (21n+4) và 14n+3)
hay (21n+4) và 14n+3) cùng chia hết cho d > 1
=> 3(14n +3) - 2(21n + 4) = 1 chia hết cho d > 1 vô lý
=> đpcm
Chứng tỏ rằng: \(\frac{14n+3}{21n+5}\)là phân số tối giản với mọi n thuộc Z
rrxdưAsse ddgjug fcrddf3ưeesfffdd
cho n thuộc N. chứng tỏ
14n+ 3/21n+5 là phân số tối giản
Gọi \(d\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(42n+9\right)⋮d\\\left(42n+10\right)⋮d\end{cases}}\)
\(\Rightarrow\left(42n+10\right)-\left(42+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1\right\}\)
\(\Rightarrow1\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\frac{14n+3}{21n+5}\)là phân số tối giản
CHỨNG TỎ RẰNG:\(\dfrac{14n+3}{21n+5}\) LÀ PHÂN SỐ TỐI GIẢN VỚI MỌI n∈Z
Giả sử UCLN(14n+3;21n+5)=d
14n+3 chia hết cho d nên 42n+9 chia hết cho d
21n+5 chia hết cho d nên 42n+10 chia hết cho d
vay 1 chia hết cho d, d=1
Vậy phân số tối giản
Giải:
Gọi ƯC(14n+3;21n+5)=d
⇒14n+3 ⋮ d ⇒3.(14n+3) ⋮ d ⇒42n+9 ⋮ d
21n+5 ⋮ d 2.(21n+5) ⋮ d 42n+10 ⋮ d
⇒(42n+10)-(42n+9) ⋮ d
⇒ 1 ⋮ d
⇒d=1
Vậy 14n+3/21n+5 là phân số tối giản.
Chúc bạn học tốt!
chứng tỏ rằng phân số sau tối giản \(\frac{21n+1}{14n+3}\) ( n thuộc N)
chứng tỏ rằng phân số sau đây tối giản
21n+4/14n+3
giúp mình nek
Đặt D là UCLN(21n+4;14n+3)
=> 21n+4 chia hết cho D => 2(21n+4) chia hết cho D => 42n+8 chia hết cho D
=> 14n+3 chia hết cho D => 3(14n+3) chia hết cho D => 42n+9 chia hết cho D
Ta có : (42n+9)-(42n+8) chia hết cho D =>1 chia hết cho D => D=1 => 21n+4/14n+3 là phân số tối giản
Gọi d là ƯCLN (21n+4; 14n+3) (d thuộc N*)
=> 21n+4 và 14n+3 chia hết cho d
=> 2(21n+4) và 3(14n+3) chia hết cho d
=> 42n+8 và 42n+9 chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d
=> 1 chia hết cho d vì d thuộc N*
=> d=1
=> đpcm