cho hai số dương x;y thỏa mãn điều kiện \(x^3+y^3=x-y\)
chứng minh \(x^2+y^2< 1\)
cho x y là hai số nguyên dương và y là số âm hỏi y là số nguyên dương hay số nguyên âm nếu : a)x,y là số nguyên dương b)x y là số nguyên âm
a, y là số nguyên âm nếu x,y là số nguyên dương
b,y là số nguyên dương nếu x,y là số nguyên âm
bạn k cho mk nha
Đem nhân số dương x với 2, và tích số này sau đó chia cho 3. Biết số dương là căn bậc hai của kết quả hai phép tính trên bằng x, hãy tìm giá trị của x ?
- Vì khi đem nhân số dương x với 2, sau đó tích số này sau đó chia cho 3 và số dương đó là căn bậc hai của kết quả hai phép tính trên bằng x nên:
- Ta có: \(x=\sqrt{\frac{2x}{3}}\)( * )
\(\Rightarrow x^2=\frac{2x}{3}\)
\(\Leftrightarrow3x^2=2x\)
\(\Leftrightarrow3x^2-2x=0\)
\(\Leftrightarrow x.\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{2}{3}\end{cases}}\)
- Thử lại:
+ Với \(x=2\)thay vào phương trình ( * ), ta có:
\(\sqrt{\frac{2.2}{3}}=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\ne2\)
Vậy \(x=2\)loại
+ Với \(x=\frac{2}{3}\)thay vào phương trình ( * ), ta có:
\(\sqrt{\frac{2.\frac{2}{3}}{3}}=\sqrt{\frac{2}{3}.\frac{2}{3}}=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)thỏa mãn
Vậy \(S=\left\{\frac{2}{3}\right\}\)
cho hai số hửu tỉ x=2a+7/5 và y=3b-8/5 với giá trị nào của a,b . a. x và y là hai số dương b x và y là hai số âm c. x và y ko phải là số dương và cũng không số âm
lên google tra là bài tập về số hữu tỉ lớp 7 là ra
Cho x,y là hai số dương khác nhau.Chứng minh x^3-3xy^2+2y^3 cũng là số dương
nhanh nha lm đúng và nhanh nhất mk tik cho
a) cho x, y là hai số nguyên dương, biết | x | + | y | = 20 . Tính x + y
b) cho x, y là hai số nguyên âm , biết | x | + | y | = 20 . Tính x + y
Cho tam thức bậc hai f(x) = x^2 - 20x + 11.
a) Tìm tất cả các số hữu tỉ x sao cho căn f(x) là một số hữu tỉ.
b) Tìm tất cả các số nguyên dương x sao cho căn f(x) là một số nguyên dương.
cho x,y là hai số nguyên dương biết x +y =2021. tìm min P=xy
có x+y=2021=>y=2021-x
=>x.y=x(2021-x)=2021x-\(x^2\)
=>P=2021x-\(x^2\)
=> -P=\(x^2-2021x\)\(=x^2-2.\dfrac{2021}{2}.x+\left(\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)=\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)
lại có x,y nguyên dương=>x,y\(\ge\)1
có x+y=2021=>x,y\(\le\)2020
=>\(x\le2020\)
=>\(x-\dfrac{2021}{2}\le2020-\dfrac{2021}{2}\)
<=>\(\left(x-\dfrac{2021}{2}\right)^2\le\left(\dfrac{2019}{2}\right)^2\)
=>\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\le\)\(\left(\dfrac{2019}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2=-2020\)
<=>\(-P\le-2020< =>P\ge2020\)
dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2020\\x=1\end{matrix}\right.\)
vậy MIN P=2020 khi x=2020 hoặc x=1
bổ sung đoạn cuối dấu với x=2020 thì y=1
với x=1 thì y =2020
Cho hai số dương x, y thỏa mãn: x + y = 2
CMR: x2y2(x2 + y2) ≤ 2
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1
Cho 2019 số nguyên dương không vượt quá 4036. CMR tồn tại hai số x; y trong 2019 số dã cho thảo mãn x chia hết cho y
Cho x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
A. x n m = x n m
B. x m y n = x y m + n
C. x m x n = x m + n
D. x y n = x n y n