Những câu hỏi liên quan
BN
Xem chi tiết
GP
Xem chi tiết
NT
7 tháng 8 2018 lúc 16:38

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Bình luận (0)
NT
18 tháng 1 2021 lúc 22:28

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 6 2021 lúc 16:43

`a^2+b^2+c^2+3=2(a+b+c)`

`<=>a^2+b^2+c^2+3-2a-2b-2c=0`

`<=>a^2-2a+1+b^2-2b+1+c^2-2c+1=0`

`<=>(a-1)^2+(b-1)^2+(c-1)^2=0`

`VT>=0`

Dấu "=" `<=>a=b=c=1`

Áp dụng bđt cosi ta có:

`a^2+b^2>=2ab`

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

`=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`=>a^2+b^2+c^2>=ab+bc+ca`

`=>(a+b+c)^2>=3(ab+bc+ca)`

Dấu '=" `<=>a=b=c`

3 không rõ đề

Bình luận (0)
DT
Xem chi tiết
NH
10 tháng 8 2016 lúc 14:46

Hỏi đáp Toán

Bình luận (0)
LF
10 tháng 8 2016 lúc 14:48

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

Bình luận (0)
HN
10 tháng 8 2016 lúc 14:52

a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)

\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)

c) Giải tương tự câu b) , bắt đầu từ (1)

Bình luận (0)
LH
Xem chi tiết
DT
Xem chi tiết
H24
14 tháng 8 2018 lúc 11:10

a, a2+b2+c2+3=2(a+b+c)

a2+b2+c2+3-2a-2b-2c=0

(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

(a-1)2+(b-1)2+(c-1)2=0

mà (a-1)2+(b-1)2+(c-1)2\(\ge\)0

=>\(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

=> a=b=c=1

Bình luận (0)
RC
Xem chi tiết
AA
Xem chi tiết
DT
2 tháng 7 2016 lúc 12:40

\(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+a+ab+b=ab+a+b+1\Leftrightarrow ab=1\left(dpcm\right)\)

Bình luận (0)
LT
Xem chi tiết

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
LD
23 tháng 7 2019 lúc 11:25

a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2=-2ab\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)

b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)

c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tương tự câu b ta có a = b = c

Bình luận (0)
CL
Xem chi tiết
NQ
1 tháng 1 2018 lúc 9:52

Câu 1 : 

ad=bc => a/b=c/d ( a,b,c,d khác 0 )

=> b/a=d/c

=> 1-b/a=1-d/c

=> a-b/a=c-d/c 

=> a/a-b=c/c-d

=> ĐPCM

Câu 2 : 

Đk để phân số tồn tại là a,b,c khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c=1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3

=> ĐPCM

k mk nha

Bình luận (0)
CL
1 tháng 1 2018 lúc 9:48

câu 2 : là (a+b+c)^2 nha mn mình nhầm

Bình luận (0)