Tìm x:
x+ \(3x^2\)=0
Bài 4 : Tìm x biết
a)x( x-2 ) + x - 2 = 0
a) 5x( x-3 ) - x+3 = 0
b) (3x + 5)(4 – 3x) = 0
c) 3x(x – 7) – 2(x – 7) = 0
a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
tìm x
a) x2 - 5x = 0
b) 3x ( x - 2 ) + 2( 2 - x ) = 0
c) 5x ( 3x - 1 ) + x( 3x - 1 ) - 2( 3x - 1) = 0
a)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b)
\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)
c)
\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)^2.2=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
1)Tìm x:
a. (x+1)(x-2)<0
b. (x-2):(3x+2)<0
c. (x-2)(3x+2)>0
2) Tìm x, biết: x*x=x
1)Tìm x
a) (x+1)(x-2)<0
=>Có 2TH:
TH1:
x+1<0=>x< -1
x-2>0=>x>2
=>Vô lí
TH2:
x+1>0=>x> -1
x-2<0=>x<2
=> -1<x<2
Vậy x thuộc {0;1}
b) Tương tự a thôi ạ.
c) (x-2)(3x+2)
=> Có hai TH:
TH1:
x-2<0=>x<2
3x+2<0=>3x< -2=>x< -2/3
=>x< -2/3
TH2:
x-2>0=>x>2
3x+2>0=>3x> -2=>x> -2/3
=>x>2
Vậy x< -2/3 hoặc x>2
2)Tìm x
x.x=x
<=>x²-x=0
<=>x(x-1)=0
<=>x=0 hoặc x=1
Cảm ơn nha Linh
Tìm x
Y) x^2-x-6=0
Z) 3x² –5x–8=0
J) 25x^2-4=0
R) 2(x+3)-x^2-3x=0
U. x³–3x² –x+3=0
Giúp mik vs mình cần gấp
y) \(x^2-x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\) là nghiệm của pt.
z) \(3x^2-5x-8=0\\ \Leftrightarrow\left(3x-8\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{8}{3};-1\right\}\) là nghiệm của pt.
j) \(25x^2-4=0\\ \Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-2}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{2}{5};\dfrac{-2}{5}\right\}\) là nghiệm của pt.
r) \(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;2\right\}\) là nghiệm của pt.
u) \(x^3-3x^2-x+3=0\\ \Leftrightarrow x^2\left(x-3\right)-\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{-1;1;3\right\}\) là nghiệm của pt.
Tìm x
Y) x^2-x-6=0
Z) 3x² –5x–8=0
J) 25x^2-4=0
R) 2(x+3)-x^2-3x=0
U. x³–3x² –x+3=0
Giúp mik vs mình cần gấp
y: Ta có: \(x^2-x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
z: Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-1\end{matrix}\right.\)
j: Ta có: \(25x^2-4=0\)
\(\Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
r: Ta có: \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
u: Ta có: \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=-1\end{matrix}\right.\)
Bài 4: Tìm x:
1) x2 - 9x = 0 2) x(x - 4) – x2 = 7 3) 3x + 2(x – 5) = 5
4) 25x2 - 1 = 0 5) 3x(x - 2) - 5(x - 2) = 0 6) 3x(x - 7) + 4(x – 7) = 0
7) 4x2 – 9 = 0 8) 10x(x - 4) + 2x - 8 = 0 9) x(2x - 5) - 2x2 = 0
10) 2x2 – 4x = 0 11) 2x(3 - 4x) + 3(4x - 3) = 0 12) 2x (x – 5) – 2x2 = 3
mọi người giúp mình vs chiều 1g mình thi rồi! cảm ơn!
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
1) \(x^2-9x=0\Rightarrow x\left(x-9\right)=0\Rightarrow x=0;9\)
2) \(x\left(x-4\right)-x^2=7\Rightarrow-4x=7\Rightarrow x=-\dfrac{7}{4}\)
3) \(3x+2\left(x-5\right)=5\Rightarrow5x-10=5\Rightarrow5x=15\Rightarrow x=3\)
4) \(25x^2-1=0\Rightarrow x^2=\dfrac{1}{25}\Rightarrow x=\pm\dfrac{1}{5}\)
5) \(3x\left(x-2\right)-5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(3x-5\right)=0\Rightarrow x=2;\dfrac{5}{3}\)
6) \(3x\left(x-7\right)+4\left(x-7\right)\Rightarrow\left(3x+4\right)\left(x-7\right)=0\Rightarrow x=-\dfrac{4}{3};7\)
7) \(4x^2-9=0\Rightarrow x^2=\dfrac{9}{4}\Rightarrow x=\pm\dfrac{3}{2}\)
8) \(10x\left(x-4\right)+2x-8=0\Rightarrow2\left(x-4\right)\left(5x+1\right)=0\Rightarrow x=4;-\dfrac{1}{5}\)
9) \(x\left(2x-5\right)-2x^2=0\Rightarrow x\left(2x-5-2x=0\right)\Rightarrow x=0\)
10) \(2x^2-4x=0\Rightarrow2x\left(x-2\right)=0\Rightarrow x=0;2\)
11) \(2x\left(3-4x\right)+3\left(4x-3\right)=0\Rightarrow2x\left(4x-3\right)-3\left(4x-3\right)=0\Rightarrow\left(4x-3\right)\left(2x-3\right)=0\Rightarrow x=\dfrac{3}{4};\dfrac{3}{2}\)
12) \(2x\left(x-5\right)-2x^2=3\Rightarrow-10x=3\Rightarrow x=-\dfrac{3}{10}\)
Tìm x biết:
\(a) x^2+3x-10=0 \)
\(b) x^2-5x-6=0\)
\(c) 2x^2+3x-2=0\)
a: Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b: Ta có: \(x^2-5x-6=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
Tìm x
a)3x(x-2)+2(2-x)=0
b)5x(3x-1)+x(3x-1)-2(3x-1)=0
a)\(3x\left(x-2\right)+2\left(2-x\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b)\(5x\left(3x-1\right)+x\left(3x-1\right)-2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x-2\right)=0\)
\(\Leftrightarrow2\left(3x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)^2=0\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
a/3x(x-2)+2(2-x)=0
=>(2-3x)(2-x)=0
=>\(\orbr{\begin{cases}2-3x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
b/5x(3x-1)+x(3x-1)-2(3x-1)=0
=>(5x+x-2)(3x-1)=0
=>(6x-2)(3x-1)=0
=>\(\orbr{\begin{cases}6x-2=0\\3x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}6x=2\\3x=1\end{cases}}\)=>x=\(\frac{1}{3}\)
Tìm x:
a,x(3x-5)=0
b,3x^2-27=0
c,(x-5)^2=x-5
d,2(x+7)-x^2-7x=0
e,7x(x-3)+2(3x)=0
\(x\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)
a) \(x\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
b) \(3x^2-27=0\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
c) \(\left(x-5\right)^2=x-5\)
\(\Leftrightarrow x^2-10x+25-x+5=0\)
\(\Leftrightarrow x^2-11x+30=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)
d) \(2\left(x+7\right)-x^2-7x=0\)
\(\Leftrightarrow2x+14-x^2-7x=0\)
\(\Leftrightarrow-x^2-5x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
e)\(7x\left(x-3\right)+2.3x=0\)
\(\Leftrightarrow7x^2-21x+6x=0\)
\(\Leftrightarrow7x^2-15x=0\)
\(\Leftrightarrow x\left(7x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)
#H
\(3x^2-27=0\)
\(3x^2=27\)
\(x^2=9\)
\(x\in\left\{3;-3\right\}\)