Những câu hỏi liên quan
H24
Xem chi tiết
NT
7 tháng 4 2022 lúc 18:32

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

Bình luận (1)
H24
7 tháng 4 2022 lúc 18:34

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

Bình luận (0)
H24
7 tháng 4 2022 lúc 18:41

\(3,3x^2-7x-1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{7}{3}\\P=x_1x_2=\dfrac{c}{a}=-\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(B=\dfrac{2x_2^2}{x_1+x_2}+2x_1\)

\(=\dfrac{2x_2^2+2x_1\left(x_1+x_2\right)}{x_1+x_2}\)

\(=\dfrac{2x_2^2+2x_1^2+2x_1x_2}{x_1+x_2}\)

\(=\dfrac{2\left(x_1^2+x_2^2\right)+2x_1x_2}{x_1+x_2}\)

\(=\dfrac{2\left(S^2-2P\right)+2P}{S}\)

\(=\dfrac{2\left(\dfrac{7}{3}^2-2\left(-\dfrac{1}{3}\right)\right)+2\left(-\dfrac{1}{3}\right)}{\dfrac{7}{3}}\)

\(=\dfrac{104}{21}\)

Vậy \(B=\dfrac{104}{21}\)

Bình luận (4)
BT
Xem chi tiết
PT
6 tháng 2 2019 lúc 21:17

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

Bình luận (0)
NT
14 tháng 2 2023 lúc 8:15

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

Bình luận (0)
PL
Xem chi tiết
HO
28 tháng 2 2020 lúc 9:23

\(\left(3x+1\right)^2=3x+1\)

\(\Leftrightarrow\left(3x+1\right)^2-3x-1=0\)

\(\Leftrightarrow9x^2+6x+1-3x-1=0\)

\(\Leftrightarrow9x^2+3x=0\)

\(\Leftrightarrow3x\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}}\)

Vậy pt trên có tập nghiệm là \(S=\left(0;-\frac{1}{3}\right)\)

   #hok tốt# 

Bình luận (0)
 Khách vãng lai đã xóa
LQ
28 tháng 2 2020 lúc 9:09

bạn nhấn trên google rồi gõ geteasysolution,nhấn vào rồi bạn làm pt này nhanh lắm ,nó có cách giải luôn cho bạn,mình cũng đang sử dụng

Bình luận (0)
 Khách vãng lai đã xóa
LQ
28 tháng 2 2020 lúc 9:11

nếu không được thì mình bó tay

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
18 tháng 7 2023 lúc 14:16

(\(x\) - 2)(\(\sqrt{3x+1}\) ) - 1 = 3\(x\)  Đk : 3\(x\) + 1 ≥ 0;  \(x\) ≥ - \(\dfrac{1}{3}\)

(\(x\) - 2)(\(\sqrt{3x+1}\)) - (3\(x\) + 1) = 0

\(\sqrt{3x+1}\).(\(x\) - 2 - \(\sqrt{3x+1}\)) = 0

\(\left[{}\begin{matrix}\sqrt{3x+1}=0\\x-2-\sqrt{3x+1}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x-2=\sqrt{3x+1}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2-4x+4=3x+1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2-7x+3=0\end{matrix}\right.\)

\(x^2\) - 7\(x\) + 3 = 0

△ = 49 -12 = 37

\(x_1\) = \(\dfrac{7+\sqrt{37}}{2}\)

\(x_{_{ }2}\) = \(\dfrac{-7-\sqrt{37}}{2}\) (loại)

 

 

          

Bình luận (0)
AV
Xem chi tiết
NT
15 tháng 3 2022 lúc 20:09

a, đk : x >= 1

\(\left[{}\begin{matrix}3x+5=2x-2\\3x+5=2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\left(ktm\right)\)

vậy pt vô nghiệm 

b, đk >= 0 

\(\left[{}\begin{matrix}x^2+1=2x\\x^2+1=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

c, \(\left[{}\begin{matrix}2x^2+2x=0\\2x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x\left(x+1\right)=0\\x^2+2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0;x=-1\\x=-1\end{matrix}\right.\)

Bình luận (1)
CD
Xem chi tiết
NN
19 tháng 3 2023 lúc 20:48

`(3x-1)(x^2 +2)=(3x-1)(7x-10)`

`<=> (3x-1)(x^2 +2)-(3x-1)(7x-10)=0`

`<=> (3x-1)(x^2 +2-7x+10)=0`

`<=> (3x-1)(x^2 -7x+12)=0`

`<=> (3x-1)(x^2 -3x-4x+12)=0`

`<=> (3x-1)[x(x-3)-4(x-3)]=0`

`<=> (3x-1)(x-4)(x-3)=0`

\(< =>\left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\\x=3\end{matrix}\right.\)

Bình luận (0)
NV
19 tháng 3 2023 lúc 21:31

\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left[\left(x^2-3x\right)-\left(4x-12\right)\right]=0\)

\(\Leftrightarrow\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x-1\right)\left[\left(x-3\right)\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{1}{3};3;4\right\}\)

Bình luận (0)
DD
Xem chi tiết
HN
Xem chi tiết
KQ
Xem chi tiết
AV
Xem chi tiết
TT
15 tháng 3 2022 lúc 15:51

\(\left|2x+1\right|=4.\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=-4.\\2x+1=4.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}.\\x=\dfrac{3}{2}.\end{matrix}\right.\)

\(\left|3x-2\right|+1=0.\)

\(\Leftrightarrow\left|3x-2\right|=-1\) (vô lý).

\(\Rightarrow x\in\phi.\)

Bình luận (0)