so sánh \(\sqrt{29}+\sqrt{3}+\sqrt{2003}và50\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh \(\sqrt{29}+\sqrt{3}+\sqrt{2003}\)Với 50
\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50
\(\sqrt{29}>\sqrt{25}=5\)
\(\sqrt{3}>\sqrt{1}=1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)
so sánh
\(\sqrt{2004}-\sqrt{2003}và\sqrt{2006}-\sqrt{2005}\)
\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)
\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)
\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)
So sánh: \(\sqrt{29}\)+\(\sqrt{3}\)+\(\sqrt{2003}\) và 50
-Ta có: √29 > √25 =5
√3 > 1
√2003 >√1936 =44
-Cộng từng vế của ba bất đẳng thức ta được
√29 + √3 + √2003 > 1+5 +44 = 50
-Vậy √29 + √3 + √2003 = 50
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)
So sánh 2 số sau:\(x=\sqrt{2003}+\sqrt{2004}+\sqrt{2005},y=\sqrt{2001}+\sqrt{2002}+\sqrt{2009}\)
So sánh\(\sqrt{29}+\sqrt{3}+\sqrt{2015}\) với 50
\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)
\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)
50 bé hơn đó bạn !!! Vì mình không biết bấm căn thức nên mình phải ghi vầy !!!
2.so sánh
\(a.\sqrt[3]{5\sqrt{2}-7}-33\sqrt{2}và-1\)
3.tính giá trị của biểu thức:
\(B=\sqrt[3]{45+29\sqrt{2}}-\sqrt[3]{45-29\sqrt{2}}\)
so sánh \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
Áp dụng BĐT CAuchy-Schwarz ta có:
Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)
\(\le\left(1+1\right)\left(2003+2005\right)\)
\(=2\cdot4008=8016\)
\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)
ÂY ... >>>>>>
BI ...========
CI <<<<<<<<<
CÂU TRẢ LỜI LÀ Â B C D E F J A T O E M S D
ÂYY
So sánh:
\(\sqrt{2003}+\sqrt{2004}\) và \(2\sqrt{2004}\)
\(\sqrt{2003}\)\(+\)\(\sqrt{2004}\)\(>\)\(2\)\(\sqrt{2004}\)
k mik nha
Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2004}\right)^2>0\)
\(\le\left(1+1\right)\left(2003+2004\right)=2\cdot4007=8014\)
\(\Rightarrow A^2\le8014\). Và
\(B^2=\left(2\sqrt{2004}\right)^2=4\cdot2004=8016\)
Suy ra \(A^2\le8014< 8016=B^2\Leftrightarrow A< B\)