So sánh 2 số hữu tỉ:
\(\dfrac{-11}{3^7\cdot7^3}\) và \(\dfrac{-78}{3^7\cdot7^4}\)
Giúp mình nha!
So sánh 2 số hữu tỉ:
\(\dfrac{-11}{3^7\cdot7^4}\) và \(\dfrac{-78}{3^7\cdot7^4}\)
Giúp mình với ạ!
-11>-78
nên \(-\dfrac{11}{3^7\cdot7^4}>-\dfrac{78}{3^7\cdot7^4}\)
A=\(\dfrac{2}{3\cdot7}\)+\(\dfrac{2}{7\cdot11}\)+\(\dfrac{2}{11\cdot15}\)+...+\(\dfrac{2}{n\cdot\left(n+4\right)}\)(với n thuộc n*,n lớn hơn hoặc bằng 3) .So sánh A với \(\dfrac{1}{6}\)
\(A=\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\\ =\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{n+4}\right)\\ =\dfrac{1}{2}.\dfrac{n+1}{3\left(n+4\right)}=\dfrac{n+1}{6\left(n+4\right)}\\ =\dfrac{n+4-3}{6\left(n+4\right)}=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}< \dfrac{1}{6}.\)
Giải:
A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)
A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)
A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)
A=1/2.(1/3-1/n+4)
A=1/6-1/2.(n+4)
⇒A>1/6
Chúc bạn học tốt!
So sánh các số hữu tỉ sau: (ko quy đồng)
Câu 1:
\(\dfrac{-25}{37}\)và \(\dfrac{-20}{31}\)
Câu 2:
\(\dfrac{2}{3}\)và\(\dfrac{5}{7}\)
Câu 3:
\(\dfrac{8}{13}\)và\(\dfrac{5}{7}\)
Các bạn trình bày các bước giúp mình nha. MÌNH SẼ TICK CHO BẠN NÀO CÓ ĐÁP ÁN ĐÚNG NHẤT.
Lưu ý: Ko dùng phương án quy đồng
Câu 1 :
\(\dfrac{-25}{37}\&\dfrac{-20}{31}\)
Ta thấy \(\dfrac{-25}{37}< \dfrac{-20}{37}\)
mà \(\dfrac{-20}{37}< \dfrac{-20}{31}\)
\(\Rightarrow\dfrac{-25}{37}< \dfrac{-20}{31}\)
Câu 2 :
\(\dfrac{2}{3}\&\dfrac{5}{7}\)
\(\dfrac{2}{3}:\dfrac{5}{7}=\dfrac{2}{3}.\dfrac{7}{5}=\dfrac{14}{15}< 1\)
\(\Rightarrow\dfrac{5}{7}>\dfrac{2}{3}\) Câu 3 : \(\dfrac{8}{13}\&\dfrac{5}{7}\)Ta thấy \(\dfrac{8}{13}:\dfrac{5}{7}=\dfrac{8}{13}.\dfrac{7}{5}=\dfrac{56}{65}< 1\)
\(\Rightarrow\dfrac{8}{13}< \dfrac{5}{7}\)so sánh các cặp số hữu tỉ sau
a)\(\dfrac{3}{-7}\)và \(\dfrac{-5}{9}\)
b)-0,625 và \(\dfrac{-19}{50}\)
c)\(-2\dfrac{5}{9}\)và \(-\left(\dfrac{-23}{-9}\right)\)
giúp mình với, mik tick cho
Lời giải:
a. $\frac{3}{-7}=\frac{-27}{63}$
$\frac{-5}{9}=\frac{-35}{63}$
Do $\frac{27}{63}< \frac{35}{63}$ nên $\frac{-27}{63}> \frac{-35}{63}$
$\Rightarrow \frac{3}{-7}> \frac{-5}{9}$
---------
b.
$-0,625=\frac{-625}{1000}=\frac{-5}{8}=\frac{-125}{200}$
$\frac{-19}{50}=\frac{-76}{200}> \frac{-125}{200}$
$\Rightarrow -0,625> \frac{-19}{50}$
c.
$-2\frac{5}{9}=-(2+\frac{5}{9})=\frac{-23}{9}=-(\frac{-23}{-9})$
Hãy tính các tổng sau:
a)\(\dfrac{1}{1\cdot3}\)+\(\dfrac{1}{3\cdot5}\)+\(\dfrac{1}{5\cdot7}\)+\(\dfrac{1}{7\cdot9}\)+\(\dfrac{1}{9\cdot11}\)=
b)\(\dfrac{1}{4\cdot7}\)+\(\dfrac{1}{7\cdot10}\)+\(\dfrac{1}{10\cdot13}\)+\(\dfrac{1}{13\cdot16}\)=
c)\(\dfrac{1}{2\cdot7}\)+\(\dfrac{1}{7\cdot12}\)+\(\dfrac{1}{12\cdot17}\)+...=
1100444-88888=
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(\frac{10}{22}\)
1. TÍNH NHANH
\(\dfrac{3}{7}+\dfrac{5}{3\cdot7}+\dfrac{7}{3\cdot19}+\dfrac{9}{7\cdot19}\)
2. KO QUY ĐỒNG HÃY SO SÁNH
\(\dfrac{3}{4};\dfrac{5}{6};\dfrac{7}{10}\)
1.tính nhanh:
Ta có: (chép đầu bài)
=\(\dfrac{3}{1.7}\)+\(\dfrac{5}{7.3}\)+\(\dfrac{7}{3.19}\)+\(\dfrac{9}{19.7}\)
=(\(\dfrac{3}{4.7}\)+\(\dfrac{5}{7.12}\)+\(\dfrac{7}{12.19}\)+\(\dfrac{9}{19.28}\)).4
=(\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{12}\)+\(\dfrac{1}{12}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{28}\)).4
=(\(\dfrac{1}{4}\)-\(\dfrac{1}{28}\)).4
=1-\(\dfrac{1}{7}\)
= \(\dfrac{6}{7}\)
2.so sánh
Ta có:1-\(\dfrac{3}{4}\)=\(\dfrac{1}{4}\) ; 1-\(\dfrac{5}{6}\)=\(\dfrac{1}{6}\) ; 1-\(\dfrac{7}{10}\)=\(\dfrac{3}{10}\)
(quy đồng rồi so sánh ba hiệu trên,hiệu nào nhỏ thì phân số bị trừ lớn và ngược lai.Đến đây bạn tự làm hộ mk nhé!)
Tính:
\(\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+\dfrac{1}{9\cdot11}+\dfrac{1}{11\cdot13}+\dfrac{1}{13\cdot15}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{13\cdot15}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{15}=\dfrac{2}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{5}{15}-\dfrac{1}{15}=\dfrac{4}{15}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\)
= \(\dfrac{1}{3}-\dfrac{1}{13}\)
=\(\dfrac{10}{26}=\dfrac{5}{13}\)
\(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{99\cdot101}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+......+\dfrac{2}{99.101}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}\)
\(=\dfrac{101}{303}-\dfrac{3}{303}\)
\(=\dfrac{98}{303}\)
\(B=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+\dfrac{2}{4\cdot5\cdot6}+\dfrac{2}{5\cdot6\cdot7}+\dfrac{2}{6\cdot7\cdot8}\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)