So sánh :
\(A=\dfrac{10^8+2}{10^8-1}\) và \(B=\dfrac{10^8}{10^8-3}\)
Cho M=\(\dfrac{10^8+2}{10^8-1}\) và N=\(\dfrac{10^8}{10^8-3}\).Em hãy so sánh M và N.
Giúp mình với
\(M=\dfrac{10^8+2}{10^8-1}=\dfrac{\left(10^8-1\right)+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(N=\dfrac{10^8}{10^8-3}=\dfrac{\left(10^8-3\right)+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(1+\dfrac{3}{10^8-3}< 1+\dfrac{3}{10^8-1}\) nên \(M< N\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
So sánh :
\(A=\dfrac{10^8+2}{10^8-1};B=\dfrac{10^8}{10^8-3}\)
A =\(\dfrac{10^8+2}{10^8-1}\)= 1\(\dfrac{3}{10^8-1}\)
B=\(\dfrac{10^8}{10^8-3}\)=1\(\dfrac{3}{10^8-3}\)
Vì \(\dfrac{3}{10^8-1}\)<\(\dfrac{3}{10^8-3}\)
nên A<B
So sánh:
a/ \(A=\dfrac{17^{18}+1}{17^{19}+1};B=\dfrac{17^{17}+1}{17^{18}+1}\)
b/ \(A=\dfrac{10^8-2}{10^8+2};B=\dfrac{10^8}{10^8+4}\)
c/ \(A=\dfrac{20^{10}+1}{20^{10}-1};B=\dfrac{20^{10}-1}{20^{10}-3}\)
GIÚP MÌNH VỚI
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
So sánh hai phân số:
a) \(\dfrac{1}{5}\) và \(\dfrac{3}{5}\) b) \(\dfrac{9}{10}\) và \(\dfrac{3}{10}\) c) \(\dfrac{7}{12}\) và \(\dfrac{11}{12}\) d) \(\dfrac{7}{8}\) và \(\dfrac{5}{8}\)
e) \(\dfrac{17}{100}\) và \(\dfrac{23}{100}\) g) \(\dfrac{4}{10}\) và \(\dfrac{1}{10}\) h) \(\dfrac{100}{100}\) và \(\dfrac{49}{100}\) k) \(\dfrac{15}{15}\) và \(\dfrac{2}{15}\)
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
2/ So sánh các phân số sau :
a/ \(\dfrac{7}{10}\) và \(\dfrac{11}{15}\) ; b/ \(\dfrac{-1}{8}\) và \(\dfrac{-5}{24}\) ; c/ \(\dfrac{25}{100}\) và \(\dfrac{10}{40}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
a)
b)
c) \(\dfrac{25}{100}=\dfrac{10}{40}\)
So sánh
A = \(\dfrac{3^{10}+1}{3^9+1}\) và B = \(\dfrac{3^9+1}{3^8+1}\)
Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}\)
\(\Leftrightarrow A=\dfrac{3^{10}+3-2}{3^9+1}\)
hay \(A=3-\dfrac{2}{3^9+1}\)
Ta có: \(B=\dfrac{3^9+1}{3^8+1}\)
\(\Leftrightarrow B=\dfrac{3^9+3-2}{3^8+1}\)
hay \(B=3-\dfrac{2}{3^8+1}\)
Ta có: \(3^9+1>3^8+1\)
\(\Leftrightarrow\dfrac{2}{3^9+1}< \dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}>-\dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}+3>-\dfrac{2}{3^8+1}+3\)
hay A>B
Bài 6: So sánh
a,\(\dfrac{1}{2}\)+\(\dfrac{1}{_{ }2^2}\)+\(\dfrac{1}{2_{ }^3}\)+...+\(\dfrac{1}{2^{2014}}\)và 1 b,\(\dfrac{10^{2018}+5}{10^{2018}-8}\)và \(\dfrac{10^{2019}+5}{10^{2019}-8}\)
c,\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{23.24.25}\)và\(\dfrac{1}{4}\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
So sánh:
A=\(\dfrac{10^8+2}{10^8-1}\)
B=\(\dfrac{10^8}{10^8-3}\)
\(A=\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=\dfrac{10^8-1}{10^8-1}+\dfrac{3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(B=\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=\dfrac{10^8-3}{10^8-3}+\dfrac{3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(\dfrac{3}{10^8-1}< \dfrac{3}{10^8-3}\)
Nên \(1+\dfrac{3}{10^8-1}< 1+\dfrac{3}{10^8-3}\)
Vậy A < B.