Những câu hỏi liên quan
TT
Xem chi tiết
TH
19 tháng 2 2022 lúc 22:50

\(M=\dfrac{10^8+2}{10^8-1}=\dfrac{\left(10^8-1\right)+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(N=\dfrac{10^8}{10^8-3}=\dfrac{\left(10^8-3\right)+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

Vì \(1+\dfrac{3}{10^8-3}< 1+\dfrac{3}{10^8-1}\) nên \(M< N\)

Bình luận (0)
Xem chi tiết
TN
13 tháng 3 2018 lúc 13:22

a,A<B

b,A,<B

c,A<B

Bình luận (0)
ST
13 tháng 3 2018 lúc 14:52

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

Bình luận (0)
SK
Xem chi tiết
VL
16 tháng 6 2017 lúc 17:26

A =\(\dfrac{10^8+2}{10^8-1}\)= 1\(\dfrac{3}{10^8-1}\)

B=\(\dfrac{10^8}{10^8-3}\)=1\(\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}\)<\(\dfrac{3}{10^8-3}\)

nên A<B

Bình luận (0)
VD
27 tháng 4 2018 lúc 8:50

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

Bình luận (0)
HD
30 tháng 4 2018 lúc 21:36

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

Bình luận (0)
NC
Xem chi tiết

Giải:

a) A=1718+1/1719+1

17A=1719+17/1719+1

17A=1719+1+16/1719+1

17A=1+16/1719+1

Tương tự:

B=1717+1/1718+1

17B=1718+17/1718+1

17B=1718+1+16/1718+1

17B=1+16/1718+1

Vì 16/1719+1<16/1718+1 nên 17A<17B

⇒A<B

b) A=108-2/108+2

    A=108+2-4/108+2

    A=1+-4/108+2

Tương tự:

B=108/108+4

B=108+4-4/108+1

B=1+-4/108+1

Vì -4/108+2>-4/108+1 nên A>B

c)A=2010+1/2010-1

   A=2010-1+2/2010-1

   A=1+2/2010-1

Tương tự:

B=2010-1/2010-3

B=2010-3+2/2010-3

B=1+2/2010-3

Vì 2/2010-3>2/2010-1 nên B>A

⇒A<B

Chúc bạn học tốt!

Bình luận (1)
H24
Xem chi tiết
VP
10 tháng 10 2023 lúc 21:47

a) \(< \)

b) \(>\)

c) \(< \)

d) \(>\)

e) \(< \)

g) \(>\)

h) \(>\)

k) \(>\)

Bình luận (0)
HU
Xem chi tiết
H24
19 tháng 1 2022 lúc 10:27

2/

a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)

\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)

-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)

b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)

-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)

c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)

\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)

-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)

Bình luận (0)
HD
19 tháng 1 2022 lúc 10:26

a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)

c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)

Bình luận (0)
H24
19 tháng 1 2022 lúc 10:29

a) 

b) 

c) \(\dfrac{25}{100}=\dfrac{10}{40}\)

Bình luận (0)
LC
Xem chi tiết
NT
29 tháng 4 2021 lúc 19:37

Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}\)

\(\Leftrightarrow A=\dfrac{3^{10}+3-2}{3^9+1}\)

hay \(A=3-\dfrac{2}{3^9+1}\)

Ta có: \(B=\dfrac{3^9+1}{3^8+1}\)

\(\Leftrightarrow B=\dfrac{3^9+3-2}{3^8+1}\)

hay \(B=3-\dfrac{2}{3^8+1}\)

Ta có: \(3^9+1>3^8+1\)

\(\Leftrightarrow\dfrac{2}{3^9+1}< \dfrac{2}{3^8+1}\)

\(\Leftrightarrow-\dfrac{2}{3^9+1}>-\dfrac{2}{3^8+1}\)

\(\Leftrightarrow-\dfrac{2}{3^9+1}+3>-\dfrac{2}{3^8+1}+3\)

hay A>B

Bình luận (0)
BB
Xem chi tiết
TC
16 tháng 7 2021 lúc 14:16

undefined

Bình luận (0)
MK
Xem chi tiết
NT
24 tháng 6 2022 lúc 22:56

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B

Bình luận (0)
JJ
Xem chi tiết
ND
2 tháng 4 2017 lúc 21:27

A>B

Bình luận (0)
NQ
2 tháng 5 2017 lúc 8:39

\(A=\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=\dfrac{10^8-1}{10^8-1}+\dfrac{3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(B=\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=\dfrac{10^8-3}{10^8-3}+\dfrac{3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}< \dfrac{3}{10^8-3}\)

Nên \(1+\dfrac{3}{10^8-1}< 1+\dfrac{3}{10^8-3}\)

Vậy A < B.

Bình luận (0)