Bài 1
Cho x + y = 2 Chứng minh rằng x.y <1
cho x+y =2 .chứng minh rằng x.y<=1
x+y=2
=> (x+y)2=4
=> x2+y2+2xy = 4
Áp dụng x2+y2 >= 2xy
=> x2+y2+2xy >= 4xy
Mà x2+y2+2xy = 4
=> 4>= 4xy
=> xy <= 1
Cho x + y = 2 . Chứng minh rằng x.y bé hơn hoặc bằng 1
cho x+y=2 chứng minh rằng x.y nhỏ hơn hoặc bằng 1
x+y=2
\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...
y=1; y=2; y=3; y=4;...
\(\Rightarrow\)x.y= 1.1=1=1
0.2=0<1
-1.3=-3<1
-2.4=-8<1
.............
\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1
Ta có: \(x+y=2\)
\(\Rightarrow x=2-y.\)
Có: \(x.y=\left(2-y\right).y\)
\(\Rightarrow x.y=2y-y^2\)
\(\Rightarrow x.y=-y^2+2y-1+1\)
\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)
Vì \(\left(y-1\right)^2\ge0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)
\(\Rightarrow x.y\le1\left(đpcm\right).\)
Chúc bạn học tốt!
các bạn ơi giúp mình với
Cho x + y =2. Chứng minh rằng x.y<1 hoặc x . y =1
Cho x,y sao cho x+y=1
Chứng minh rằng x.y<1/4
Đề của bạn thiếu dấu bằng.
Ta có:
\(xy=\frac{4xy}{4}\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
Bài 1. Chứng minh rằng với mọi x,y thuộc R thì
x.y +11+222+3333+.... thuộc z
Cho x + y = 2. Chứng minh rằng x.y \(\le\)1.
Ta có \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)\(\Rightarrow x-2\sqrt{xy}+y\ge0\)\(\Rightarrow x+y\ge2\sqrt{xy}\)
Mà x + y = 2 \(\Rightarrow\)\(2\ge2\sqrt{xy}\)\(\Rightarrow1\sqrt{xy}\le1\)\(\Rightarrow xy\le1\)
Vi 2 = 2 + 0 ; 1 + 1 .nen x.y = 2 . 0 ; 1.1 chi bang 0 hoac 1 nen x.y <= 1
Có : (x-y)^2 >= 0
<=> x^2+y^2-2xy >= 0
<=> 2xy < = x^2+y^2
<=> 4xy < = x^2+y^2+2xy = (x+y)^2 = 2^2 = 4
<=> xy < = 4 : 4 = 1
Dấu "=" xảy ra <=> x=y=1
=> ĐPCM
Tk mk nha
Bài 1:Cho biết z tỉ lệ thuận với y theo hệ số tỉ lệ 10;y tỉ lệ nghịch với x theo hệ số tỉ lệ là 7. Chứng minh rằng z tỉ lệ thuận với x và tìm hệ số tỉ lệ
Bài 2:Tìm 2 số x và y biết x,y tỉ lệ nghịch với 3,4 biết x.y=14
Bài 1: Cho x + y = -3 và x.y = -28. Tính giá trị các biểu thức sau theo m,n.
a) x^2 + y^2 b) x^3 + y^3 c) x^4 + y^4
Bài 2: Chứng minh rằng:
a) a^2 + b^2 + c^2 +d^2 >_ ab+ac+ad
b) a^2 + 4b^2 +4c^2 >_ 4ab - 4ac + 8bc
Bài 3: Chứng minh rằng:
Nếu x + y + z = 0 thì x^3 + y^3 + z^ 3 = 3xyz
Bài 4: Chứng minh : a^2 + 4b^2 + 4c^2 >_ 4ab - 4ac + 8bc
( Viết về dạng bình phương của một tổng)
GIÚP MÌNH VỚI Ạ!!!!!!!!!!!!
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
Bài 3:
Có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
=> \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)
=> \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)
=> TA CÓ ĐPCM.
VẬY \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Bài 2 :
a) Giả sử \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-ab-ac-ad\ge0\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2-4ab-4ac-4ad\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d^2\right)\ge0\)( luôn đúng )
\(\RightarrowĐPCM\)
b) Sửa đề : \(a^2+4b^2+4c^2\ge2ab-2ac+4bc\)
Ta có : \(\left(a+2c\right)^2\ge0\Leftrightarrow a^2+4c^2\ge-4ac\left(1\right)\)
Áp dụng BĐT Cô - si ta có :
\(\hept{\begin{cases}a^2+4b^2\ge4ab\left(2\right)\\4b^2+4c^2\ge8bc\left(3\right)\end{cases}}\)
(1) + (2) + (3)
\(\Leftrightarrow2a^2+8b^2+8c^2\ge4ab-4ac+8bc\)
\(\Leftrightarrow2\left(a^2+4b^2+4c^2\right)\ge4\left(ab-ac+2bc\right)\)
\(\Leftrightarrow a^2+4b^2+4c^2\ge2ab-2ac+4bc\)