Cho x, y là các số không âm thỏa mãn \(x^3+y^3=2\). Chứng minh rằng: \(x^2+y^2\le2\)
Cho \(x,y\) là hai số không âm thỏa mãn điều kiện \(x^3+y^3=2\). Chứng minh rằng \(x^2+y^2\le2\).
Áp dụng BĐT Bunhiacopxky:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)
\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)
\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)
Áp dụng bất đẳng thức Cô si cho ba số dương ta có
, đẳng thức xảy ra khi và chỉ khi .
Tương tự, . Cộng theo vế hai bất đẳng thức nhận được ta có
Sử dụng giả thiết suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi
Cho các số không âm x,y thỏa mãn\(x^3+y^3\) = 2 .CMR : \(x^2+y^2\le2\)
Áp dụng BĐT Bunhiacôpxki , ta có :
\(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\) \(\le\left(x+y\right)\left(x^3+y^3\right)=2\left(x+y\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^4\le4\left(x+y\right)^2=4\left(1.x+1.y\right)^2\le4\left(1+1\right)\left(x^2+y^2\right)=8\left(x^2+y^2\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^3\le8\)
\(\Leftrightarrow x^2+y^2\le2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi x = y = 1
Cho 3 số thực không âm x ,y ,z thỏa mãn x + y + z = 2 . Chứng minh rằng : x + 2y + z >= (2 - x)(2 - y)(2 - z)
Bất đẳng thức cần chứng minh tương đương:
\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).
Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).
Do đó ta chỉ cần chứng minh:
\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).
Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi y = 0; x = z = 1.
Cho x,y là các số thực thỏa mãn \(0\le x\le y\le1;2xy+y\le2\)
Chứng minh rằng :\(2x^2+y^2\le\frac{3}{2}\)
Chứng minh rằng với x,y là hai số thực không âm thỏa mãn \(x+y\ge1\)ta luôn có :
\(\sqrt{x^2+x+4}+\sqrt{y^2+y+4}\le2+\sqrt{\left(x+y\right)^2+x+y+4}\)
Ai biết làm không giúp với.
Cho x và y là các số dương thỏa mãn x+y=2
Chứng minh rằng \(x^2.y^2.\left(x^2+y^2\right)\le2\)
Cho x,y là các số thực không âm thỏa mãn x,y\(\le\)1
chứng minh rằng:\(\frac{x+y}{2}\le\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\le1\)
Cho hai số x,y thỏa mãn \(x^3+y^3=2\). Chứng minh rằng: \(x+y\le2\)
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\le1\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\ge\frac{3}{4}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
Bài 3 thì \(\le1\)
Bài 4 thì \(\ge\frac{3}{4}\) nhé
cho xyz là các số không âm thỏa mãn xyz=1. Chứng minh rằng: P= 1/[(x+1)^2)+y^2+1] + 1/[(y+1)^2+z^2+1] + 1/[(x+1)^2+ x^2+1] nhỏ hơn hoặc bằng 1/2