Những câu hỏi liên quan
CD
Xem chi tiết
KS
6 tháng 1 2023 lúc 15:46

ta có :

`1^3` \(⋮\) `1`

\(2^3⋮2\)

\(3^3⋮3\)

.................

\(100^3⋮100\)

`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)

vậy `A` \(⋮\)`B`

Bình luận (0)
QT
Xem chi tiết
NM
29 tháng 11 2021 lúc 11:05

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)

Bình luận (0)
NA
29 tháng 11 2021 lúc 11:10

B = 31 + 32 + 33 + .... + 399 + 3100

3B = 3(31 + 32 + 33 + ..... + 399 + 3100)

3B = 32 + 33 + 34 +...... + 3100 + 3101

3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)

2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)

2B = 0 + 0 + 0 + ..... +0 + 3101 - 1

2B = 3101 - 1

B = (3101 - 1)  : 2

Bình luận (0)
NA
Xem chi tiết
NQ
10 tháng 11 2017 lúc 13:14

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

Bình luận (0)
H24
10 tháng 11 2017 lúc 13:09

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

Bình luận (0)
PD
10 tháng 11 2017 lúc 13:13

a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

b, với m lẻ từ hằng đẳng thức đáng nhớ ta có 
a^m+b^m=(a+b) {a^(m-1)-[a^(m-2)]b+...-a.[b^(m-2)]+b^(m... chia hết cho a+b 
 

Bình luận (0)
TN
Xem chi tiết
VH
Xem chi tiết
NH
3 tháng 11 2017 lúc 22:43

https://www.toaniq.com/tinh-gia-tri-bieu-thuc-a-13-23-33-1003/

bạn vào táp này khác có lời giải

Bình luận (0)
KC
Xem chi tiết
LP
Xem chi tiết
H24
20 tháng 8 2023 lúc 10:11

Để tính tổng của dãy số A=5+5^2+5^3+…+5^100, chúng ta có thể sử dụng công thức tổng của cấp số nhân. Công thức này là: S = a * (r^n - 1) / (r - 1), trong đó S là tổng của cấp số nhân, a là số hạng đầu tiên, r là công bội và n là số lượng số hạng. Trong trường hợp này, a = 5, r = 5 và n = 100. Áp dụng công thức, ta có: S = 5 * (5^100 - 1) / (5 - 1) Bạn có thể tính giá trị của S bằng cách sử dụng máy tính hoặc công cụ tính toán trực tuyến.

Bình luận (0)
LT
Xem chi tiết
TG
30 tháng 1 2020 lúc 15:46

Câu 2:

Violympic toán 8

Câu 3:Hỏi đáp Toán

Tham khảo nhé!

Bình luận (0)
 Khách vãng lai đã xóa
TL
30 tháng 1 2020 lúc 15:46

Câu 2:

Tham khảo ở đây

Câu hỏi của Le Thi Hong Van - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
VL
Xem chi tiết
DL
18 tháng 10 2015 lúc 14:24

Ta có :

B=101.50

gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

⇒A⋮50.101⇒A⋮B

Bình luận (0)
VL
18 tháng 10 2015 lúc 14:22

Ta có :

B=101.50

A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

A⋮50.101⇒AB

Bình luận (0)
NA
20 tháng 10 2024 lúc 16:29

Kc

 

Bình luận (0)