tìm gtnn của bt chua gttd
| x+ 2 | +3
2/a/tim GTLN cua:
A=9-2.[x-3] (dau [ la GTTD)
b/tìm GTNN của:
B=[x-2]+[x-8] (dấu [ là GTTD)
Ta có : \(\left|x-3\right|\ge0\)
=> \(2\left|x-3\right|\ge0\)
Nên : \(A=9-2\left|x-3\right|\le9\)
Vậy \(A_{max}=9\) khi x = 3
\(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(8-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\x\le8\end{cases}\Rightarrow}2\le x\le8}\)
TH2: \(\hept{\begin{cases}x-2\le0\\8-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le2\\x\ge8\end{cases}}\left(loại\right)}\)
Vậy Bmin = 6 khi 2 <= x <= 8
2a) \(|x-3|\)\(\ge\)0 => -2\(|x-3|\)\(\le\)0 => 9 - 2\(|x-3|\) \(\le\)9
Vậy GTLN của A là 9 khi và chỉ khi x=3
b) B= \(|x-2|\)+ \(|x-8|\)\(\ge\)\(|x-2+3-x|\)= 1
vậy GTNN của B =1 khi và chỉ khi 2\(\le\)x <8
Tìm GTNN của A=/x-3/+/x-5/+/x-7/
B=/x-1/+/x-2/+/x-3/+/x-5/
*/ / là gttd
1) Tìm cặp số nguyên a, b
3×GTTD của a+5×GTTD của b =33
2) Tìm a thuộc Z
5a-17/4a-23 có giá trị lớn nhất
3) Tìm x biết
GTTD x-1 = GTTD 2x+3
Tra loi dung het va trinh bay mik se tick
a)tìm x biết: 5^x-1 + 5^x-3= 650
b)tìm x biết: gttd x+1 +gttd x+2 +.......+gttd x+100=605x (gttd: giá trị tuyệt đối)
c) tìm x,y biết : (2x+1)/5=(4y-5)/9=(2x+4y-4)/7x
a) \(5^{x-1}+5^{x-3}=650\)
\(\Rightarrow5^x\left(\frac{1}{5}+\frac{1}{125}\right)=650\)
\(\Rightarrow5^x=650:\frac{26}{125}\)
\(\Rightarrow5^x=3125\)
\(\Rightarrow5^x=5^5\)
\(\Rightarrow x=5\)
tìm x biết
GTTD của (x-3)+GTTD của (2x-4) bang 5
Tập xác định của phương trình
Biến đổi vế trái của phương trìnhPhương trình thu được sau khi biến đổiLời giải thu đượcKết quả: Giải phương trình với tập xác định
Lời giải: Giải phương trình với tập xác định
1Tập xác định của phương trình
2Biến đổi vế trái của phương trình
3Phương trình thu được sau khi biến đổi
4Lời giải thu được
Kết quả: Giải phương trình với tập xác định
a,tìm GTNN của bt
A=x^2+10x-37
b,tìm GTLN của bt
B=6x-x^2+3
tìm GTNN và GTLN của bt A=|x+1|+2|x+2|-3|x+3|
Tìm giá trị nhỏ nhất của biểu thức
P=GTTD(x-1)+GTTD(x-2017)+GTTD(x-2018)
Tìm GTNN của bt : D = (x^5 + 2)/x^3