Cho △ABC có AM, BN, CE là đường trung tuyến CM :\(\dfrac{3}{4}\)(AB+BC+AC)∠AM+BN+CE∠AB+BC+AC
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có 3 đường trung tuyến AM, BN, CE
a, cm: AM bé hơn AB+AC/2
b, cm: AM+BN+CE bé hơn ab+ac+bc
1. Cho tam giác ABC, trung tuyến AM,BN,CE. CMR: AM+BN+CE<AB+AC+BC
Xét tam giác AEM có:
\(AM< AE+EM\)
\(AM< \frac{1}{2}AB+\frac{1}{2}AC\)
\(AM< \frac{1}{2}\left(AB+AC\right)\)
Tương tự ta cũng có:
\(CE< \frac{1}{2}\left(AC+BC\right)\)
\(BN< \frac{1}{2}\left(AB+BC\right)\)
\(\Rightarrow AM+BN+CE< AB+AC+BC\left(đpcm\right)\)
P/s xong rồi nhé mình làm hơi tắt mong bạn thông cảm :)
1. Cho tam giác ABC, trung tuyến AM,BN,CE. CMR: AM+BN+CE<AB+AC+BC
cho tam giác abc vuông tại a có ab=20cm, bc = 25 cm. ba đường trung tuyến am, bn, ce cắt nhau tại O. tính độ dài am. bn, ce
\(BC^2=AB^2+AC^2\left(Pitago\right)\)
\(\Rightarrow AC^2=BC^2-AB^2=625-400=225\)
\(\Rightarrow AC=15\left(cm\right)\)
\(AM^2=\dfrac{2.\left(AB^2+AC^2\right)-BC^2}{4}\) (Độ dài trung tuyến trong tam giác)
\(\Rightarrow AM^2=\dfrac{2.\left(400+225\right)-625}{4}=\dfrac{625}{4}\)
\(\Rightarrow AM=\dfrac{25}{2}\left(cm\right)=12,5\left(cm\right)\)
Tương tự ...
\(BN^2=\dfrac{2.\left(AB^2+BC^2\right)-AC^2}{4}\)
\(\Rightarrow BN^2=\dfrac{2.\left(400+625\right)-225}{4}=\dfrac{1825}{4}\)
\(\Rightarrow BN=\sqrt[]{\dfrac{1825}{4}}=\sqrt[]{\dfrac{73.25}{4}}=\dfrac{5\sqrt[]{73}}{4}\left(cm\right)\)
\(CE^2=\dfrac{2.\left(AC^2+BC^2\right)-AB^2}{4}\)
\(\Rightarrow CE^2=\dfrac{2.\left(225+625\right)-400}{4}=\dfrac{1300}{4}\)
\(\Rightarrow CE=\sqrt[]{\dfrac{1300}{4}}=\sqrt[]{\dfrac{13.100}{4}}=\dfrac{10\sqrt[]{13}}{4}=\dfrac{5\sqrt[]{13}}{2}\left(cm\right)\)
Đính chính
\(BN=\dfrac{5\sqrt[]{73}}{2}\left(cm\right)\)
\(CE=\dfrac{10\sqrt[]{13}}{2}=5\sqrt[]{13}\left(cm\right)\)
cho tam giác abc vuông tại a có ab=20cm, bc = 25 cm. ba đường trung tuyến am, bn, ce cắt nhau tại O. tính độ dài am. bn, ce
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=12,5cm
AC=căn 25^2-20^2=15cm
AN=15/2=7,5cm
BN=căn AN^2+AB^2=5/2*căn 73(cm)
AE=20/2=10cm
CE=căn AC^2+AE^2=căn 15^2+10^2=5*căn 13(cm)
tam giác ABC có góc A = 60*, AB = 5cm , BC = 13 cm , 3 đường trung tuyến : AM , BN , CE cắt nhau tại O
a) Tính AM , BN , CE = ?
b) diện tích tam giác BOC = ?
cho tam giác ABC có AB = 3 cm, AC = 4 cm, BC =5cm, kẻ đường trung tuyến AM. Qua. kẻ đường thẳng d vuông với AM, qua M kẻ các đường thẳng vuông góc với AB và AC chúng cắt đường thẳng d lần lượt tại D và E. CMR: a) BD// CE b) DE= BD+ CE
cho tam giác ABC có trọng tâm G #đường trung tuyến AM : BN ; CP
CM 3(AM+BN+CP)<2(AB+BC+AC
Cho tam giác ABC, 3 đường trung tuyến AM,BN,CF.
CM: AM+BN+CF<AB+AC+BC
ai giải giùm bài này đê mk cx có bài bí hi
1234657689