cho C=1+3+3^2+........+3^11
chứng minh rằng:
a)C chia hết cho 13
b)C chia hết cho 40
Cho C 1 3 3 2 3 3 ... 3 11. Chứng minh rằng a, C chia hết cho 13b, C chia hết cho 40
Cho C=1+3+32+33+…+311.Chứng minh rằng:
a)C chia hết cho 15
b)C chia hết cho 40
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
\(b,C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\\ =40+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\\ =40.\left(1+3^4+3^8\right)⋮40\)
cho C=5+5mũ 2 + 5 mũ 3+.....+5 mũ 20
a)chứng minh c chia hết cho 5
b)chứng minh c chia hết cho 6
c)chứng minh c chia hết cho 1
bài 3
cho C=1+3+3 mũ 2 +...+3 mũ 11.Chứng minh C chia hết 40
Cho a,b,c là các số tự nhiên khác 0 và a+2.b+3.c chia hết cho 7. Chứng minh rằng: 17a+13b+9c chia hết cho 7
C = 1 +3 +3 ^ 2 +...........+ 3 ^99 . Chứng minh rằng
a,C chia hết cho 4 b, C chia hết cho 40
C/M C\(⋮\)4
\(C=1+3+3^2+...+3^{99}⋮4\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)
\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)
\(C=4+3^2.4+...+3^{98}.4⋮4\)
\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)
C/M C\(⋮\)40
\(C=1+3+3^2+...+3^{99}⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)
\(C=40.1+...+3^{96}.40⋮40\)
\(C=40.\left(1+...+3^{96}\right)⋮40\)
ai lạnh ko tui lạnh quá mà vẫn ko có ng iu
Cho C= 1+3+3^2+...+3^11. Chứng minh:
a/ C chia hết cho 13
b/ C chia hết cho 40
\(C=1+3+3^2+...+3^{11}\)
a) \(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+3^6\left(1+3+3^2\right)+3^9\left(1+3+3^2\right)\)
\(=13+3^3.13+3^6.13+3^9.13\)
\(=13\left(1+3^3+3^6+3^9\right)⋮13\)
\(\Rightarrow C⋮13\)
b) \(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow C⋮40\)
C chia het cho ca 13 va 40
a) \(C=1+3+3^2+........+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...........+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+.....+3^9.\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(1+3^3+.......+3^9\right)\)
\(=13.\left(1+3^3+.......+3^9\right)⋮13\)( đpcm )
b) \(C=1+3+3^2+.......+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right).\left(1+3^4+3^8\right)\)
\(=40.\left(1+3^4+3^8\right)⋮40\)( đpcm )
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12
chứng minh rằng :
C = 1+3^2+3^3+...+3^11
C chia hết cho 13
C chia hết cho 40
Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440
hay 2C = 531440 => C = 53144 :2 = 265720
265720 = 20440.13 => C chia hết cho 13 ( vì có thừa số 13)
265720 = 6643.40 => C chia hết cho 40 ( vì có thừa số 40)
Cho C=1+3+3^2+3^3+...+3^20. Chứng minh rằng:
a, C chia hết cho 13
b, C chia hết cho 40
Cho C= 1+3+3^2+3^3+...+3^11. Chứng minh rằng
a, C chia hết cho 13
b, C chia hết cho 40
\(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+......+\left(3^9+3^{10}+3^{11}\right)\)
\(C=13.1+3^3.13+......+3^9.13\)
\(C=13.\left(1+3^3+3^6+3^9\right)\)
Chia hết cho 13
\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=40.1+40.3^4+40.3^8\)
\(C=40.\left(1+3^4+3^8\right)\)
Chia hết cho 40
Cho A = 1-3+3 mũ 2-3 mũ 3+3 mũ 4-3 mũ 5+.....+3 mũ 98-3 mũ 99 chứng to A chia hết cho 20
gffjjfhhhfh