tìm x:
x^2-48x-25=0
48{ x-2 } = 48x +25
\(48\left(x-2\right)=48x+25\)
\(\Rightarrow48x-48.2=48x+25\)
\(\Rightarrow48x-96=48x+25\)
\(\Rightarrow48x-48x=25+96=121\)
\(\Rightarrow0=121\)
=> Vô lí
Tìm x:
1.x^3-3x^2=0
2.3x^3-48x=0
3.5x(x-1)=x-1
4.2(x+5)-x^2-5x=0
5.2x(x-5)-x(3+2x)=26
\(1,x^3-3x^2=0\)
\(x^2\left(x-3\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=3\left(TM\right)\end{cases}}}\)
\(2,3x^3-48x=0\)
\(3x\left(x^2-16\right)=0\)
\(\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x^2=16\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=\pm4\left(TM\right)\end{cases}}}}\)
\(3,5x\left(x-1\right)=x-1\)
\(5x^2-5x=x-1\)
\(5x^2-6x+1=0\)
\(5x^2-5x-x+1=0\)
\(5x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(5x-1\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}\orbr{\begin{cases}x=\frac{1}{5}\left(TM\right)\\x=1\left(TM\right)\end{cases}}}\)
\(4,2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\)
\(-x^2-3x+10=0\)
\(-x^2-5x+2x+10=0\)
\(-x\left(x+5\right)+2\left(x+5\right)=0\)
\(\left(x+5\right)\left(2-x\right)=0\)
\(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\orbr{\begin{cases}x=-5\left(TM\right)\\x=2\left(TM\right)\end{cases}}}\)
\(5,2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x-26=0\)
\(-13\left(x+2\right)=0\)
\(x=-2\left(TM\right)\)
Trả lời:
1, \(x^3-3x^2=0\)
\(\Leftrightarrow x^2\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy x = 0; x = 3 là nghiệm của pt.
2, \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)
Vậy x = 0; x = 4; x = - 4 là nghiệm của pt.
3, \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = 1; x = 1/5 là nghiệm của pt.
4, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Vậy x = - 5; x = 2 là nghiệm của pt.
5, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Vậy x = - 2 là nghiệm của pt.
tìm x, biết
x4+4x3-4x2-48x-48=0
x4+4x3-4x2-48x-48=0
=> x4+4(x3-x2) - 48x = 48
=> x4 + 4[x2(x-1)] - 48x = 48
\(x^4+4x^3-4x^2-48x-48=0\)
\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)
\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)
Ta có: \(x^2+6x+12=\left(x+3\right)^2+3>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)
Vậy...
Tìm x biết x 3 – 12 x 2 + 48 x – 64 = 0
A. x = -4
B. x = 4
C. x = -8
D. x = 8
Ta có
x 3 – 12 x 2 + 48 x – 64 = 0 ⇔ x 3 – 3 . x 2 . 4 + 3 . x . 4 2 – 4 3 = 0 ⇔ ( x – 4 ) 3 = 0
ó x – 4 = 0 ó x = 4
Vậy x = 4
Đáp án cần chọn là: B
Bài 2 : Tìm x biết:
a) 2x(x – 5) – x(3 + 2x) = 26 b) 5x(x – 1) = x – 1
c) 2(x + 5) - x2 – 5x = 0 d) (2x – 3)2 - (x + 5)2=0
e) 3x3 – 48x = 0 f) x3 + x2 – 4x = 4
g) (x – 1)(2x + 3) – x(x – 1) = 0 h) x2 – 4x + 8 = 2x – 1
Bài 3: Sắp xếp rồi làm tính chia:
a)
b)
Bài 4: Tìm a sao cho
a) Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b) Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Bài 5*: Chứng minh rằng biểu thức:
A = x(x - 6) + 10 luôn luôn dương với mọi x.
B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.
Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :
A = x2 – 4x + 2019 B = 4x2 + 4x + 11
C = 4x – x2 +1 D = 2020 – x2 + 5x
E = (x – 1)(x + 3)(x + 2)(x + 6) F= - x2 + 4xy – 5y2 + 6y – 17
G = x2 – 4xy + 5y2 + 10x – 22y + 28
Bài 7: Cho biểu thức M =
a/ Tìm điều kiện để biểu thức M có nghĩa ?
b/ Rút gọn biểu thức M ?
c/ Tìm x nguyên để M có giá trị nguyên.
d/ Tìm giá trị của M tại x = -2
e/ Với giá trị nào của x thì M bằng 5.
Bài 8 : Cho biểu thức : M =
a) Tìm điều kiện xác định và rút gọn biểu thức
b) Tính giá trị của M khi x = 1; x = -1
c) Tìm số tự nhiên x để M có giá trị nguyên.
Bài 9: Cho biểu thức
a/Tìm giá trị của x để giá trị của biểu thức C được xác định.
b/Tìm x để C = 0.
c/ Tính giá trị của C biết |2x -1| = 3
d/ Tìm x để C là số nguyên âm lớn nhất.
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
tìm x
1, 49x mũ 2 - 70x + 25 tại x = 5
2, x mũ 3 + 12x mũ 2 + 48x +64 tẠI x = 6
3, 4x mũ 2 + 4xy + y mũ 2 tại x = -6, y= 2
a, \(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2=\left(7x-5\right)^2\)
Thay x = 5 vào biểu thức trên : \(\left(35-5\right)^2=30^2=900\)
b, \(x^3+12x^2+48x+64=\left(x+4\right)^3\)
Thay x = 6 vào biểu thức trên ta được : \(\left(6+4\right)^3=1000000\)
3, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
Thay x = -6 ; y = 2 vào biểu thức trên ta được : \(\left(-12+2\right)^2=100\)
1.49x^2 - 70x + 25 tại x = 5
49x2 – 70x + 25 = (7x)2 – 2 . 7x . 5 + 52 = (7x – 5)2
Với x = 5: (7 . 5 – 5)2 = (35 – 5)2 = 302 = 900
2.x^3 + 12x^2 + 48x + 64 tại x = 6
x3 + 12x2 + 48x + 64 = x3 + 3 . x2. 4 + 3 . x . 42 + 43
= (x + 4)3
Với x = 6: (6 + 4)3 = 103 = 1000
tìm x :
a) 3x3 - 48x = 0
b) x2 -2x = 24
\(3x^3-48x=8\)
\(3x\left(x^2-16\right)=0\)
\(3x\left(x-4\right)\left(x+4\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-4=0\\x+4=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
\(x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2-6x+4x-24=0\)
\(x\left(x-6\right)+4\left(x-6\right)=0\)
\(\left(x+4\right)\left(x-6\right)=0\)
\(\left[\begin{array}{nghiempt}x+4=0\\x-6=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-4\\x=6\end{array}\right.\)
a)\(3x^3-48x=0\\ \Rightarrow3x\left(x^2-16\right)=0\\ \Rightarrow3x\left(x-4\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}3x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy x\(\in\){0;\(\pm\)4}
b)\(x^2-2x=24\\ \Rightarrow x^2-2x-24=0\\ \Rightarrow x^2-6x+4x-24=0\\ \Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\\ \Rightarrow\left(x-6\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
Vậy x\(\in\){6;\(-\)4}
a) 3x3 - 48x = 0
⇔3x.(x2 - 16) = 0
⇔3x.(x2 - 42) = 0
⇔3x.(x-4).(x+4) = 0
⇔\(\left[{}\begin{matrix}3x=0\\x-4=0\\x+4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Còn câu b) bạn tự làm nha.
Tìm một nguyên hàm f x của hàm số f x = 48x-7. In x biết f 1 =0
f x = 24.x2 -7x In x - 12x2 +7x + 5
Bài 1: Phân tích đa thức thành nhân tử: a) 4y3 + 16y2 + 16y b) 8x2-48x+6xy-36y c) 8x2-48x-6xy+36y d) a2 –2ab+b2 –4 e) 4–x2 –4xy–4y2 f) 8a2 –16a+8ax–16x g) 16–4x2 +8xy–4y2 h) –4x2 –16xy–16y2 Bài 2: Tìm x, biết: a) x3 – 6x2 + 9x = 0 b) 5x(x–6)+3x–18=0 c) 5x(x – 6) – 18 + 3x = 0 d) 5x(x – 6) – 3x + 18 = 0 e) (2x – 3)2 = (5 – x)2 f) (2x + 1)2 = (3x – 2)2 g) 16(2x–3)=-25x2 (3–2x)
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)