Những câu hỏi liên quan
H24
Xem chi tiết
LH
23 tháng 8 2021 lúc 22:36

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

Bình luận (0)
LH
23 tháng 8 2021 lúc 22:37

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

Bình luận (0)
LH
23 tháng 8 2021 lúc 22:46

a) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4

Áp dụng bđt côsi ta có:

\frac{a}{b}+\frac{b}{a}\ge 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2,\,\,\frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}}\ge 2\sqrt{\frac{a}{{{b}^{2}}}.\frac{b}{{{a}^{2}}}}=\frac{2}{\sqrt{ab}}

\(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge \frac{4}{\sqrt{ab}} (1)

\(\Leftrightarrow\) 2={{a}^{2}}+{{b}^{2}}\ge 2\sqrt{{{a}^{2}}{{b}^{2}}}=2ab\Rightarrow ab\le 1 (1)

Từ (1) và (2) \(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4 (ĐPCM)

Đẳng thức xảy ra \(\Leftrightarrow\) \displaystyle a=b=1.

Bình luận (1)
KN
Xem chi tiết
TA
4 tháng 2 2017 lúc 13:49

BĐT Cosi cho 2 số a,b >0: 
a + b >= 2căn(ab) 

di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 

<=> a + b - 2√(ab) ≥ 0 

<=> a + b ≥ 2√(ab) 
dau "=" xay ra khi √a - √b = 0 <=> a = b 
 

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

Bình luận (0)
TA
4 tháng 2 2017 lúc 13:53

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

Bình luận (0)
ND
7 tháng 6 2020 lúc 20:26

Bài làm:

*CM bất đẳng thức Cauchy

Ta có: \(\left(x-y\right)^2\ge0\)(luôn đúng với mọi x,y)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\frac{\left(x+y\right)^2}{4}\ge xy\)

\(\Leftrightarrow\sqrt{\frac{\left(x+y\right)^2}{4}}\ge\sqrt{xy}\)

\(\Leftrightarrow\frac{x+y}{2}\ge\sqrt{xy}\)

Mình chứng minh theo cách đặt biến x,y nhé!

*Chứng minh không có giá trị nào của x,y,z thỏa mãn đẳng thức: (Đề bạn chép nhầm biến x thành a nhé)

Ta có:

\(x^2+4y^2+z^2-2x+8y-6z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4=0\)\(\left(1\right)\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)với mọi x,y,z

\(\Rightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\)với mọi x,y,z

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\ge4>0\)với mọi x,y,z \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\)Mâu thuẫn\(\Rightarrow\)Không tồn tại bất kỳ giá trị nào của x,y,z thỏa mãn đẳng thức trên

=> điều phải chứng minh

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
KK
Xem chi tiết
LF
23 tháng 6 2017 lúc 22:31

C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)

Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)

Bình luận (1)
HD
23 tháng 6 2017 lúc 22:54

* BĐT Cauchy - Schwars = BĐT Bunhiacopxki

- Thông thường :

( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)

Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)

- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn

(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)

Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)

* BĐT AM-GM

- trung bình nhân (2 số)

với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b

- Trung bình nhân ( n số )

Với x1 , x1 , x3 ,..., xn \(\ge0\)

Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)

Dấu "=" xảy ra khi x1 = x2 =...=xn

-Trung bình hệ số :

Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số

Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)

Dấu "=" xảy ra khi x1 = x2 = xn

=================

Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có

Bình luận (0)
NC
Xem chi tiết
H24
24 tháng 6 2021 lúc 21:04

Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).

                                                                                                                                                          # Aeri # 

Bình luận (0)
 Khách vãng lai đã xóa
NC
24 tháng 6 2021 lúc 21:04

Thanks bạn

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
H24
Xem chi tiết
H24
12 tháng 6 2019 lúc 17:07

Ta có :)

\(\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge\sqrt{c^2a^2}=2|ca|\end{cases}}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|\left(abc\right)^2|=8a^2b^2c^2\)

(vì a2+b2; b2+c2; c2+a2;|ab|;|bc|;|ca| đều \(\ge0\))

Bình luận (0)
HV
Xem chi tiết
TN
29 tháng 6 2017 lúc 20:20

phải chứng minh

Bình luận (0)
HV
29 tháng 6 2017 lúc 21:14

chứng minh nó thì phải cm am-gm 2 số sau đó là 4 số @@ dài lắm

Bình luận (0)
NT
Xem chi tiết
UA
11 tháng 6 2018 lúc 20:31

Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2ab

Dấu bằng xảy ra khi và chỉ khi a = b

rồi với 3 số thực a, b, c không âm: a+b+c3abc3

Dấu bằng xảy ra khi và chỉ khi a = b = c

rồi với 4 số thực a, b, c, d không âm: a+b+c+d4abcd4

Dấu bằng xảy ra khi và chỉ khi a = b = c = d

Với n số thức không âm x1,x2,x3,xnx1+x2+x3++xnnx1x2

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 9:17

Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn

Bình luận (0)