cho mình hỏi về bất đẳng thức AM-Gm, Cô-si và Cauchy nó có phải là 1 không
Bất đẳng thức Cô si Có số âm không ạ
* Các bạn ghi cho mình và hệ quả hay là những phần kiến thức về phần này với nhá
Lấy ví dụ và giúp mình từng phần về BĐT Cô si này nhá
bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng
Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau
a)
Áp dụng bđt côsi ta có:
\(\Rightarrow\) (1)
\(\Leftrightarrow\) (1)
Từ (1) và (2) \(\Rightarrow\) (ĐPCM)
Đẳng thức xảy ra \(\Leftrightarrow\) .
Cho mình hỏi cách chứng minh bất đẳng thức Cauchy (Cô-si) :
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Nhân tiện cho mình hỏi chứng minh không có giá trị nào của x,y,z thoả mản đẳng thức sau :
\(x^2+4y^2+z^2-2a+8y-6z+15=0\)
BĐT Cosi cho 2 số a,b >0:
a + b >= 2căn(ab)
di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a + b - 2√(ab) ≥ 0
<=> a + b ≥ 2√(ab)
dau "=" xay ra khi √a - √b = 0 <=> a = b
(a+b)/2 >=Cab(C là căn)
a+b>=2*Cab
(a+b)^2>=4*ab
a^2+2ab+b^2-4ab>=0
a^2-2ab+b^2>=0
(a-b)^2>=0(luôn đúng)
vây ta được điều cm
Đây chính là bất đẳng thức côsi 2 số mà bạn
(a+b)/2 >=Cab(C là căn)
a+b>=2*Cab
(a+b)^2>=4*ab
a^2+2ab+b^2-4ab>=0
a^2-2ab+b^2>=0
(a-b)^2>=0(luôn đúng)
vây ta được điều cm
Đây chính là bất đẳng thức côsi 2 số mà bạn
Bài làm:
*CM bất đẳng thức Cauchy
Ta có: \(\left(x-y\right)^2\ge0\)(luôn đúng với mọi x,y)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{4}\ge xy\)
\(\Leftrightarrow\sqrt{\frac{\left(x+y\right)^2}{4}}\ge\sqrt{xy}\)
\(\Leftrightarrow\frac{x+y}{2}\ge\sqrt{xy}\)
Mình chứng minh theo cách đặt biến x,y nhé!
*Chứng minh không có giá trị nào của x,y,z thỏa mãn đẳng thức: (Đề bạn chép nhầm biến x thành a nhé)
Ta có:
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4=0\)\(\left(1\right)\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)với mọi x,y,z
\(\Rightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\)với mọi x,y,z
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\ge4>0\)với mọi x,y,z \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\)Mâu thuẫn\(\Rightarrow\)Không tồn tại bất kỳ giá trị nào của x,y,z thỏa mãn đẳng thức trên
=> điều phải chứng minh
Học tốt!!!!
Bất đẳng thức Cauchy - Schwars
Bất đẳng thức AM - GM
Bất đẳng thức Bunhiacopxki
Bất đẳng thức Mincopxki
Cho tớ công thức của các BĐT trên , giúp với@Ace Legona
C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)
Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)
* BĐT Cauchy - Schwars = BĐT Bunhiacopxki
- Thông thường :
( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)
Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)
- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn
(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)
Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)
* BĐT AM-GM
- trung bình nhân (2 số)
với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b
- Trung bình nhân ( n số )
Với x1 , x1 , x3 ,..., xn \(\ge0\)
Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)
Dấu "=" xảy ra khi x1 = x2 =...=xn
-Trung bình hệ số :
Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số
Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)
Dấu "=" xảy ra khi x1 = x2 = xn
=================
Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có
Cho mình hỏi bất đẳng thức AM-GM là gì vậy mọi người
Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).
# Aeri #
Các bạn ơi cho mình hỏi định lí Pythagorean và định lí Thales còn dạng áp dụng nào khác không vậy? Ví dụ như bất đẳng thức Cauchy có 2 dạng là dạng chứa dấu căn và dạng không chứa dấu căn ấy
Cô quản lí Nguyễn Linh Chi nhờ mình làm VD1 trong link: Bất đẳng thức Cauchy ( Cô-si) - Học toán với OnlineMath
Chứng minh:
\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8\left(abc\right)^2\)
Ta có :)
\(\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge\sqrt{c^2a^2}=2|ca|\end{cases}}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|\left(abc\right)^2|=8a^2b^2c^2\)
(vì a2+b2; b2+c2; c2+a2;|ab|;|bc|;|ca| đều \(\ge0\))
Bên mình là quận Thủ Đức sắp có cuộc thi chọn HSG thì mình muốn hỏi là khi đi thi có cần được dùng thẳng BĐT AM-GM 3 số không (hay còn gọi là BĐT Cô-Si 3 số) hay phải chứng minh :< có ai biết không ạ cảm ơn
chứng minh nó thì phải cm am-gm 2 số sau đó là 4 số @@ dài lắm
các bạn cho mình hỏi bất đẳng thức cô-si như nào mai mình thi rồi
Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2≥ab−−√
Dấu bằng xảy ra khi và chỉ khi a = b
rồi với 3 số thực a, b, c không âm: a+b+c3≥abc−−−√3
Dấu bằng xảy ra khi và chỉ khi a = b = c
rồi với 4 số thực a, b, c, d không âm: a+b+c+d4≥abcd−−−−√4
Dấu bằng xảy ra khi và chỉ khi a = b = c = d
Với n số thức không âm x1,x2,x3,…xn: x1+x2+x3+…+xnn≥x1x2
Đúng 0
Bình luận (0)
mọi người cho em hỏi là thi vào 10 có được dùng các bất đẳng thức như cauchy mà ko cần chứng minh không ạ?
Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn