tìm 2 số tự nhiên a và b thỏa mãn (a+b).(a-b) =2014
Tìm số tự nhiên a,b thỏa mãn (2014a+1)(2014a+2)= 3b + 5
Tìm các số tự nhiên a, b thỏa mãn (2014^a +1 )(2014^a + 2 ) = 3^b + 5
giải nhanh nha!
Ai giải nhanh nhất và đúng mình sẽ tick cho
Tìm các số tự nhiên a;b thỏa mãn:
\(\left(2014^a+1\right)\left(2014^a+2\right)=3^b+5\)
1/ Chứng minh rằng : n.( n+1). ( a.n+1) chia hết cho 2 và 3
2/ Chứng minh rằng: Nếu a,b thuộc tập số tự nhiên ; a chia hết cho b ; b chia hết cho a thì a = b
3/ Tìm 2 số tự nhiên a và b thỏa mãn ( a+b).( a-b) = 2014
a) Tìm số tự nhiên a,b thỏa mãn 10 mũ a+483=b mũ 2
b) Tìm các số tự nhiên a, b,c thỏa mãn: a mũ 2+ab+ác=20×ab+b mũ 2+BC=180×ac+BC+c mũ 2=200
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
tìm 2 số tự nhiên a và b thỏa mãn:(a,b)+[a,b]=55
Gọi(a;b)=d, a=dm, b=dn, (m,n)=1,d,m,n thuộc N*
Ta có:a.b=(a,b).[a.b]
=>[a.b]=a.b:(a.b)
Theo đề bài ta có:
[a,b]+(a,)=55
=>a.b:(a,b)+(a,b)=55
Thay vào ta có:
dm.dn:d+d=55
=>d.mn+d=55
=>d.(mn+1)=55
Vì d,m,n thuộc N*, Gỉa sử a>b thì m>n ta có bảng sâu:
d | mn+1 | m | n | a | b |
1 | 55 | 54 | 1 | 54 | 1 |
5 | 11 | 10 5 | 1 2 | 50 25 | 5 10 |
11 | 5 | 4 | 1 | 44 | 11 |
Vậy(a,b)thuộc{(54,1);(50,5);(25,10);(44,11)}
1) Có 2 số tự nhiên a-b nào thỏa mãn:
(a + b).(a - b) = 2014 không ? Tại Sao ?
Tìm cặp số tự nhiên a và b thỏa mãn a/2+b/3=a+b/5
Tìm số tự nhiên để là số tự nhiên.
Cho các số a, b thỏa mãn a + b = 2 và a.b = - 2. Tính a7 + b7.
a: Để A là số tự nhiên thì \(n+8\in\left\{8;9;12;18;24;36;72\right\}\)
hay \(n\in\left\{0;1;3;10;18;28;64\right\}\)