CMR nếu 5a - 3b chia hết cho 31 thì 51a - 12b chia hết cho 31 và ngược lại
CMR nếu 5a - 3b chia hết cho 31 thì 51a - 12b chia hết cho 31 và ngược lại
Ta thấy : 5a - 3b chia hết cho 31 => 4(5a-3b) chia hết cho 31 = 20a - 12b
=> (51a - 12b) - ( 20a-12b) chia hết cho 31
=> 31a chia hết cho 31
=> đá phải con ma
Ta thấy : 5a - 3b chia hết cho 31 => 4(5a-3b) chia hết cho 31 = 20a - 12b
=> (51a - 12b) - ( 20a-12b) chia hết cho 31
=> 31a chia hết cho 31(ĐPCM)
CMR nếu 5a - 3b chia hết cho 31 thì 51a - 12b chia hết cho 31 và ngược lại
Ta có: 5a-3b chia hết cho 31
=>4.(5a-3b) chia hết cho 31
=>20a-12b chia hết cho 31
=>20a-12b+31a chia hết cho 31
=>51a-12b chi hết cho 31
Ngược lại:
51a-12b chi hết cho 31
=>20a-12b+31a chia hết cho 31
=>20a-12b chia hết cho 31
=>4.(5a-3b) chia hết cho 31
Mà (4,31)=1
=>5a-3b chia hết cho 31
CMR nếu 6x+11y chia hết cho 31 thì x+7y chia hết cho 31 và ngược lại
Đặt A= 6(x + 7y) - (6x - 11y)
=6x + 42y - 6x - 11y
=31y
Do 31y chia hết cho 31
=> 6x - 11y chia hết cho 31
=>6 ( x - 7y ) chia hết cho 31
Vì 6( x + 7y ) chia hết cho 31 => x - 7y chia hết cho 31
Vậy nếu...
Đặt A= 6(x + 7y) - (6x - 11y)
=6x + 42y - 6x - 11y
=31y
Do 31y chia hết cho 31
=> 6x - 11y chia hết cho 31
=>6 ( x - 7y ) chia hết cho 31
Vì 6( x + 7y ) chia hết cho 31 => x - 7y chia hết cho 31
Vậy nếu...
Đặt A= 6(x + 7y) - (6x - 11y)
=6x + 42y - 6x - 11y
=31y
Do 31y chia hết cho 31
=> 6x - 11y chia hết cho 31
=>6 ( x - 7y ) chia hết cho 31
Vì 6( x + 7y ) chia hết cho 31 => x - 7y chia hết cho 31
Vậy nếu...
CMR : 5a + 7b chia hết cho 13 thì 4a + 3b chia hết cho 13
CMR : 7a + 9b chia hết cho 31 thì 12a + 11b chia hết cho 31
Cho x,y thuộc Z. CMR nếu 6x+11y chia hết cho 31 thì x+ 7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+ 11y cũng chia hết cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
Cho x;y thuộc z
CMR nếu 6x+11y chia hết cho 31 thi x+7y cùng chia hết cho 31. Ngược lại nếu x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
cho x,y là các số nguyên. CMR: nếu 6x+11y chia hết cho 31 thì x+7y chia hết cho 31
điều ngược lại thì có đúng không
#)Giải :
Ta có : \(6x+11y⋮31\)
\(\Rightarrow6x+11y+31y⋮31\)
\(\Rightarrow6x+42y⋮31\)
\(\Rightarrow6\left(x+7y\right)⋮31\)
Mà (6;31) = 1 \(\Rightarrow\)y + 7y chia hết cho 31 (đpcm)
Ngược lại thì tương tự thui bạn, và điểu này thì vẫn đúng nhé !
bạn có thể chứng minh điều ngược lại được không ạ
Chi x,y thuộc Z. Chứng tỏ rằng nếu 6x+1y chia hết cho 31 thì x+7y chia hết cho 31.
Ngược lại nếu x+3y chia hết cho 31 thì 6x+11y chia hết cho 31
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
cho x,y thuộc Z.Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.Ngược lại x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
\(6x+11y⋮31\Rightarrow6x+11y+31y=6x+42y=6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
\(x+7y⋮31\Rightarrow6\left(x+7y\right)⋮31\Rightarrow6\left(x+7y\right)-31y=6x+11y⋮31\)