Những câu hỏi liên quan
TD
Xem chi tiết
TT
Xem chi tiết
NT
5 tháng 11 2021 lúc 21:06

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)

Bình luận (0)
DD
Xem chi tiết
NT
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Bình luận (1)
NT
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Bình luận (0)
DD
Xem chi tiết
NT
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Bình luận (0)
PN
Xem chi tiết
TM
Xem chi tiết
TN
1 tháng 5 2017 lúc 6:48

1, 2x2-6x+1=0

\(\Leftrightarrow\) 2(x2-3x+\(\dfrac{1}{2}\))=0

\(\Leftrightarrow\)x2-3x+\(\dfrac{1}{2}\)=0(vì 2 \(\ne\) 0)

\(\Leftrightarrow\)x2-2.\(\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{1}{2}-\dfrac{9}{4}\)=0

\(\Leftrightarrow\)(x-\(\dfrac{3}{2}\))2-\(\dfrac{7}{4}\)=0

\(\Leftrightarrow\)(x-\(\dfrac{3+\sqrt{7}}{2}\))(x-\(\dfrac{3-\sqrt{7}}{2}\))=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)

Vậy tập nghiệm bạn tự giải nhé

2a, -x2+4x-9\(\le\)5

\(\Leftrightarrow\)-x2+4x-4\(\le\)0

\(\Leftrightarrow\)-(x-2)2\(\le\)0

\(\Leftrightarrow\)(x-2)2\(\ge\)0 đúng \(\forall\) x

Vậy dfcm

Bình luận (0)
TN
1 tháng 5 2017 lúc 6:49

còn câu b bạn viết đề chưa hết \(\ge\) mấy

Bình luận (1)
TT
Xem chi tiết
DL
Xem chi tiết
LT
22 tháng 10 2021 lúc 20:24

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

Bình luận (0)
NP
Xem chi tiết
NL
9 tháng 4 2018 lúc 20:55

a) Ta có:      -\(x^2\)+4x - 9
             <=>  - ( \(x^2\)- 4x + 4 ) - 5 
             <=> - ( x - 2 )\(^2\) - 5 
Vì - ( x - 2 )\(^2\)\(\le\)0 <=>  - ( x - 2 )\(^2\) - 5  \(\le\)-5 với mọi x
b) Ta có      x\(^2\)- 2x + 9
            <=> ( x\(^2\) - 2x +1 ) + 8
            <=> ( x - 1 ) \(^2\)+ 8
Vì  ( x - 1 ) \(^2\)\(\ge\) 0 <=> ( x - 1 ) \(^2\)+ 8 \(\ge\) 8 với mọi thực x

Bình luận (0)
H24
12 tháng 6 2020 lúc 20:59

a,Ta có:\(-x^2+4x-9\)

\(\Leftrightarrow-\left(x^2-4x+4\right)-5\)

\(\Leftrightarrow-\left(x-2\right)^2-5\)

Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2-5\le-5\forall x\)

b.Ta có:\(x^2-2x+9\)

\(\Leftrightarrow\left(x^2-2x+1\right)+8\)

\(\Leftrightarrow\left(x-1\right)^2+8\)

Vì \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+8\ge8\forall x\)

Bình luận (0)
 Khách vãng lai đã xóa
QO
12 tháng 6 2020 lúc 21:06

Bài làm

a) Ta có: -x2 + 4x - 9 < -5

<=> -x2 + 4x - 9 + 5 < 0

<=> -x2 + 4x - 4 < 0

<=> -( x2 - 4x + 4 ) < 0

<=> -( x - 2 )2 < 0

<=> ( x - 2 )2 > 0 ( luôn đúng với mọi x )

Vậy -x2 + 4x - 9 < -5 với mọi x

b) x2 - 2x + 9 > 8

<=> x2 - 2x + 1 > 0

<=> ( x - 1 )2 > 0 ( luôn đúng với mọi x )

Mà với mọi x thì x thuộc tập hợp số thực.

Vậy x2 - 2x + 9 > 8 với mọi x là số thực. 

Bình luận (0)
 Khách vãng lai đã xóa