Những câu hỏi liên quan
NT
Xem chi tiết
NT
6 tháng 6 2017 lúc 10:00

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)

Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất

Ta có: \(\left|x-2016\right|\ge0\)

\(\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)

Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)

Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016

Bình luận (0)
KK
6 tháng 6 2017 lúc 9:57

Ta có :

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)

\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)

<=> |x - 2016| = 0

<=> x = 2016

Bình luận (0)
L1
Xem chi tiết
BL
Xem chi tiết
BG
28 tháng 3 2018 lúc 20:52

ko ai biết làm à

Bình luận (0)
BL
Xem chi tiết
CP
10 tháng 8 2016 lúc 11:05

ta thấy trị tuyệt đối của x-2016 lớn hơn hoặc bằng 0 với mọi x. Vậy phân thức nhỏ nhất bằng 2017/2018 

Bình luận (0)
NT
Xem chi tiết
TL
26 tháng 10 2016 lúc 12:29

a) \(A=\left|x-2016\right|+2017\)

Vì: \(\left|x-2016\right|\ge0\)

=> \(\left|x-2016\right|+2017\ge2017\)

Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)

b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)

Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)

=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)

Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)

Bình luận (4)
NT
28 tháng 10 2016 lúc 7:40

a)Ta có: |x-2016|\(\ge\) 0

=>|x-2016|+2017 \(\ge\) 2017

hay A \(\ge\) 2017

GTNN của A = 2017 khi |x-2016|=0

=>x-2016=0

=>x=0+2016

=>x=2016

Vậy GTNN của A=2017 khi x=2016

b)Tương tự câu a)

Bình luận (0)
IM
27 tháng 10 2016 lúc 11:11

Mấy bài cực trị này dễ

Sao dc vào cau hỏi hay nhỉ

Bình luận (0)
NT
Xem chi tiết
NT
26 tháng 10 2016 lúc 22:32

a) Ta có: |x-2016| luôn lớn hơn hoặc bằng 0

=>|x-2016| + 2017 luôn lớn hơn hoặc bằng 2017

Dấu bằng xảy ra khi |x-2016|=0

=> x-2016=0

=>x=2016

vậy GTNN của A bằng 2017 khi x=2016

b)Ta có |x-2016| + |y-2017| luôn lớn hơn hoặc bằng 0

=>|x-2016|+|y-2-17| + 2018 luôn lớn hơn hoặc bằng 2018

Dấu bằng xảy ra khi

\(\left[\begin{array}{nghiempt}x-1016=0\\y-1017=0\end{cases}=\left[\begin{array}{nghiempt}x=2016\\y=2017\end{array}\right.}\)

Bình luận (0)
TH
Xem chi tiết
NA
7 tháng 11 2019 lúc 20:47

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
VT
27 tháng 2 2020 lúc 15:15

Sao chép

Bình luận (0)
 Khách vãng lai đã xóa
SY
Xem chi tiết
NH
30 tháng 3 2018 lúc 19:40

Với mọi x ta có :

\(\left|x+2018\right|=\left|-x-2018\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|x+2018\right|=\left|x+2016\right|+\left|-x-2018\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|\left(x+2016\right)+\left(-x-2018\right)\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|-2\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge2\)

\(\left|x+2017\right|\ge0\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|+\left|x+2017\right|\ge2\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+2016\right)\left(-x-2018\right)\ge0\left(1\right)\\\left|x+2017\right|=0\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2016\ge0\\-x-2018\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2016\le0\\-x-2018\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2016\\-2018\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2016\\-2018\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-2016\ge x\ge-2018\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-2016\ge x\ge-2018\left(I\right)\)

Từ \(\left(2\right)\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow GTNN\) của \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2017\right|=2\Leftrightarrow x=-2017\)

Bình luận (0)