Những câu hỏi liên quan
LH
Xem chi tiết
H24
Xem chi tiết
QT
31 tháng 10 2015 lúc 21:01

 (6x+5)^2.(6x+4).(6x+6) = 35.12 

Đặt 6x+5 = t phương trình trở thành: 
t^2.(t-1).(t+1) = 420 (=) t^4 - t^3 + t^3 - t^2 = 420 (=) t^4 - t^2 = 420 

Đặt y = t^2 

phương trình có dạng: y^2 - y = 420

 Giải pt ta được y = 21 là TMĐK => t=căn 21. thay t vào tìm x

Bình luận (0)
H24
Xem chi tiết
ML
29 tháng 10 2015 lúc 23:47

\(\Leftrightarrow\left(6x+5\right)\left(6x+4\right)\left(6x+6\right)=35.2.6\)

Tới đây đặt ẩn phụ giải pt trùng phương

Bình luận (0)
MT
Xem chi tiết
HP
1 tháng 8 2021 lúc 9:05

a, ĐK: \(x\ge1\)

Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)

TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)

\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)

\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết
H24
10 tháng 8 2020 lúc 21:00

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
10 tháng 8 2020 lúc 21:01

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

Bình luận (0)
 Khách vãng lai đã xóa
VH
10 tháng 8 2020 lúc 21:02

a/ \(\left(x-1\right)\left(2x+5\right)\left(x^2+2\right)=0\)

Vì \(x^2\ge0\Rightarrow x^2+2\ge2>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)
TL
Xem chi tiết
TQ
1 tháng 5 2019 lúc 11:24

Bài 1:

\(\left\{{}\begin{matrix}x+2y=1\\2x^2-5xy=48\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\2x^2-5xy=48\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2)\(\Leftrightarrow2\left(1-2y\right)^2-5\left(1-2y\right)y=48\Leftrightarrow2\left(1-4y+4y^2\right)-5y+10y^2=48\Leftrightarrow2-8y+8y^2-5y+10y^2=48\Leftrightarrow18y^2-13y-46=0\Leftrightarrow\left(y-2\right)\left(18y+23\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}y=2\\y=-\frac{23}{18}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\x=\frac{32}{9}\end{matrix}\right.\)

Vậy (x;y)={(\(-3;2\));(\(\frac{32}{9};-\frac{23}{18}\))}

Bài 2:

a) Đặt a=x2-1(a\(\ge-1\))

Vậy pt\(\Leftrightarrow a^2-4a=5\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=5\\a=-1\end{matrix}\right.\)(tm)

TH1: a=5\(\Leftrightarrow x^2-1=5\Leftrightarrow x^2=6\Leftrightarrow x=\pm\sqrt{6}\)

TH2: a=-1\(\Leftrightarrow x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy S={\(-\sqrt{6};0;\sqrt{6}\)}

b) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\Leftrightarrow x^2+4x+4-3x-5=1-x^2\Leftrightarrow2x^2+x-2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{-1+\sqrt{17}}{4}\\x=\frac{-1-\sqrt{17}}{4}\end{matrix}\right.\)

Vậy S={\(\frac{-1+\sqrt{17}}{4};\frac{-1-\sqrt{17}}{4}\)}

c) Đặt a=\(x^2-3x+2\)

Vậy pt\(\Leftrightarrow\left(a+2\right)a=3\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)(tm)

TH1:\(a=1\Leftrightarrow x^2-3x+2=1\Leftrightarrow x^2-3x+1=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)

TH2: a=-3\(\Leftrightarrow x^2-3x+2=-3\Leftrightarrow x^2-3x+5=0\)(vô nghiệm)

Vậy S=\(\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)

Bình luận (0)
DH
Xem chi tiết