Cho a+b+c=0
Chứng minh rằng: \(\)ab+ 2bc+ 3ca \(\le\)0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a; ; b; c thỏa mãn a+ b + c = 0 . Chứng minh rằng : ab + 2bc + 3ca < 0
Cho a, b, c thỏa mãn a + b + c = 0. Chứng Minh rằng : ab + 2bc + 3ca < hoặc= 0
vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0
Cho a,b,c thỏa mãn:a+b+c=0, Chứng minh rằng :ab+2bc+3ca\(\le0\)
Giải:
\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}b+c=-a\\a+b=-c\end{matrix}\right.\)
\(\Rightarrow ab+2bc+3ca\)
\(=ab+ca+2bc+2ca\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=a\left(-a\right)+2c\left(-c\right)\)
\(=-a^2-2c^2\le0\)
Vậy \(ab+2bc+3ca\le0\) (Đpcm)
Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:
ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).
với a,b,c là các số thực thỏa mãn a^3+b^3+c^3=4abc và ab+2bc+3ca=0, chứng minh rằng a=b=c=0
Cho a,b,c thỏa mãn a+b+c=0
CMR: ab+2bc+3ca\(\le\)0
\(ab+2bc+3ac\)
\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=-a^2-2c^2\le0\)
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0
với a,b,c là các số thực thỏa mãn a^3+b^3+c^3=4abc và ab+2bc+3ca=0, chứng minh rằng a=b=c=0
Cho a+b+c=0 .CMR ab+2bc+3ca nhỏ hơn hoặc bằng 0
Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:
ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).
hok tôts
a,b,c > 0 chứng minh: 4a2 + 3b2 + 5c2 lớn hơn hoặc bằng 2(ab + 2bc + 3ca)
cho A,B,C thỏa mãn a+b+c=0
cmr ab+2bc+3ca bé hơn hoạc bằng 0
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0