Chứng minh rằng :
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/(2n-1)(2n+1) < 1/2
Chứng minh rằng với mọi n ∈ N✱ , ta có :
1/1.3+1/3.5+1/5.7+...+1/(2n-1)(2n+1)=n/2n+1
chứng minh rằng A=1/1.3+1/3.5+1/5.7+...+1/(2n+1).(2n+3) là phân số tối giản với mọi n thuộc N
nếu bn lm dc tặng 3 tick
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
a)Tính: 1/1.3 + 1/3.5 + 1/5.7 +...+1/19.21
b) chúng minh: A= 1/1.3 + 1/3.5 +...+ 1/(2n-1)(2n+1) < 1/2
a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21
Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21
= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21
= 1-1/21 = 20/21
=> B= 20/21 : 2 => B= 10/21
b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2
=> A= 1/2- 1/2n+1
=> A< 1/2 ( đpcm )
Chứng minh rằng:
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}=\dfrac{n+1}{2n+3}\)
Giúp mik vs các bn
\(P=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\\ 2P=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n+1}-\dfrac{1}{2n+3}\\ =1-\dfrac{1}{2n+3}\\ =\dfrac{2\left(n+1\right)}{2n+3}\\ P=\dfrac{2\left(n+1\right)}{2n+3}:2\\ =\dfrac{n+1}{2n+3}\)
Tình B= 1.3/3.5+2.4/5.7+3.5/7.9+....+(n-1)(n+1)/(2n-1)/2n+1 plzzzz
Tính:1/1.3 + 1/3.5 +1/5.7 +........+1/(2n-1)(2n+1)?
Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)
Tính : 1.3+3.5+5.7+...+(2n+1).(2n+2)=?
1.3+3.5+5.7+...+(2n+1).(2n+3)=(2n+1).(2n+2).(2n+3).(2n+4)
Tính S = 1.3/3.5 + 2.4/5.7 + 3.5/7.9 + ... + ( n-1)( n+1) / (2n-1)(2n+1) + ... + 1002.1004/2005.2007
\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)
\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)
\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)
\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)
\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)
\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)
\(\Rightarrow S=125,4372197\)
\(\)
1) Cho a thỏa mãn: \(a^5-a^3+a=2\) Chứng minh rằng: \(a^6< 4\)
2) Chứng minh rằng: \(\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{n}{2}-\frac{n^2}{4n+2}\)
1/ Ta có:
\(a^5-a^3+a=2\)
Dễ thấy a = 0 không phải là nghiệm từ đó ta có:
\(a^6-a^4+a^2=2a\)
\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)
\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)
Dấu = không xảy ra
Vậy \(a^6< 4\)
Câu 2/
Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo cách làm của bạn Alibabba nguyễn nha!!