cmr: 1-1/2-1/2^2-...-1/2^10 > 1/2^11
A = 1 + 2^1+2^2+2^3 +...........+2^10+2^11 . Cmr A chia hết cho 3
A = ( 1 + 2^1 ) + ( 2^2 + 2^3 ) + ... + ( 2^10 + 2^11 )
A = 3 . 1 + 3 . 4 + ... + 3 . 1024
A = 3 ( 1 + 4 + ... + 1024 )
=> A chia hết cho 3
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...........+\left(2^{10}+2^{11}\right)\)
\(=3+2^2.3+.............+2^{10}.3\)
\(=\left(1+2^2+........+2^{10}\right).3\) chia hết cho 3
Vậy A chia hết cho 3
Cmr :s3=1/5+1/13+1/25+...+1/10^2+11^2<9/20
CMR:
1/5 + 1/13 + 1/25 + .... + 1/102 + 112 < 9/10
CMR: 1/102+ 1/112+...+1/20132+ 1/20142 <9
đặt tổng trên là A
ta co:
1/10^2<1/9.10
1/11^2<1/10.11
........
1/2014^2
=>A<1/9.10+1/10.11+.......+1/2013.2014=1/9-1/2014<1/9<9(đpcm)
CMR:
a)1/10^2 +1/11^2+1/12^2+...+1/100^2 >3/4
b)1/2^2+1/3^2+1/4^2+...+1/100^2<99/100
c)1/2^2+1/3^2+1/4^2+...+1/100^2<3/4
CMR: \(\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+...+\frac{1}{100^2}>\frac{3}{4}\)
cho P = 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 . CMR : P < 1/16
P = 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 .
5P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
5P - P = ( \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)) - ( 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 . )
4P = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
4P = \(\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}< \frac{1}{4}\)
\(P< \frac{1}{16}\)
1. CMR
a, 1+11+11^2+.....+11^9 chia hết cho 10
b, Số gồm 27 chữ số 1 chia het cho 27
2.CMR
a, 5^n-1 chia hết cho 4(n thuộc N)
b, n^2+n+1 ko chia hết cho 5(n thuộc N)
ai giúp mik với CMR:
1/10+1/11+1/12+...+1/199+1/200>3/2
\(A=\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{199}+\dfrac{1}{200}\\ >\dfrac{1}{10}+\left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)\left(90so\right)+\left(\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\right)\left(100so\right)\\ A>\dfrac{1}{10}+\dfrac{90}{100}+\dfrac{100}{200}=1+\dfrac{1}{2}=\dfrac{3}{2}\left(đpcm\right).\)