Cho a, b là các số dương thỏa mãn \(a^3+b^3=a^5+b^5\)
CMR: \(a^2+b^2\le1+ab\)
Cho a,b là các số dương thỏa mãn \(a^3+b^3=a^5+b^5\)
Chứng minh rằng : \(a^2+b^2\le1+ab\)
Theo bất đẳng thức Cô-si ta có
a^5 + a >= 2√(a^5.a);
hay a^5 >= 2a^3 - a.
Chứng minh tương tự, ta cũng có
b^5 >= 2b^3 - b.
Cộng hai bất đẳng thức theo vế ta được
a^5 + b^5 >= 2a^3 + 2b^3 - a - b,
hay a^3 + b^3 >= 2a^3 + 2b^3 - a - b,
hay a^3 + b^3 <= a + b (*).
Vì a^3 + b^3 = (a + b)(a^2 - ab + b^2) nên bất đẳng thức (*) tương đương với
(a + b)(a^2 - ab + b^2) <= a + b,
hay a^2 - ab + b^2 <= 1,
hay a^2 + b^2 <= ab + 1.
Dấu bằng xảy ra khi a = b = 1
Cho a,b là các số dương thỏa mãn : \(a^3+b^3=a^5+b^5\) Chứng minh rằng : \(a^2+b^2\le1+ab\)
cho a, b là các số nguyên dương thỏa mãn a^3+b^3=a^5+b^5. CMR: a^2+b^2< hoặc =1+ab
Cho các số a,b,c là các số thực dương thỏa mãn: ab+bc+ca=3.
CMR : \(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le1\)
BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)
\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)
\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)
Theo BĐT Svacxo:
\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)
Vậy ta có đpcm.
P/s: Đúng ko ta?
cho a ,b là số dương thỏa mãn a^3 + b^3 = a^5 + b^5
CMR : a^2 + b^2 =< 1 + ab
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)
\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\)
Cho a,b dương thỏa mãn \(a^3+b^3=a^5+b^5.\) CMR : \(a^2+b^2\le1+ab\)
Ta có:
\(a^2+b^2\le1+ab\)
\(\left(a^2+b^2\right)\left(a^3+b^3\right)\le\left(1+ab\right)\left(a^5+b^5\right)\)
\(a^5+b^5+a^2b^3+a^3b^2\le a^5+b^5+a^6b+ab^6\)
\(a^2b^3+a^3b^2\le a^6b+ab^6\)
\(ab^2+a^2b\le a^5+b^5\)
\(ab^2+a^2b\le a^3+b^3\)
\(a\left(a^2-b^2\right)+b\left(b^2-a^2\right)\ge0\)
\(a\left(a^2-b^2\right)-b\left(a^2-b^2\right)\ge0\)
\(\left(a^2-b^2\right)\left(a-b\right)\ge0\)
\(\left(a-b\right)\left(a+b\right)\left(a-b\right)\ge0\)
\(\left(a-b\right)^2\left(a+b\right)\ge0\)
Do a,b là số dương => a+b>0
(a-b)2\(\ge0\left(lđ\right)\)
=> ĐPCM
Cho a, b,c là các số thực dương thỏa mãn ab +bc+ca =3.
Cmr: \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Cho a, b, c là các số thực dương thỏa mãn: \(ab+bc+ca=3\)
CMR: \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca\ge3\) . CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$