Cho phân số p=\(\dfrac{4n+3}{8n}\)với n ∈N*
Tìm n∈N* để p là số tự nhiên
tìm số tự nhiên n để A=\(\dfrac{8n+193}{4n+3}\) sao cho:
a) A có giá trị là số tự nhiên?
b) A là phân số tối giản?
c) n trong khoảng 150 đến 170 thì phân số A rút gọn được?
Tìm số tự nhiên n để phân số A = \(\dfrac{8n+193}{4n+3}\) sao cho:
a. Có giá trị là số tự nhiên.
b. Là phân số tối giản
c. Với giá trị nào của n trong khoảng 150 đến 170 thì phân số A rút gọn được?
a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3
=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)
mà n>0
nên \(n\in\left\{2;46\right\}\)
c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)
Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1
mà 150<=n<=170
nên \(n\in\left\{156;165;167\right\}\)
1. Cho phân số A= 8n +193 / 4n + 3
a, Tìm n thuộc N để A là số tự nhiên
b, Tìm n thuộc N để A là phân số tối giản
cho phân số M=\(\frac{8n+193}{4n+3}\)
a)Tìm số tự nhiên n để M là STN
b)Tìm số tự nhiên n để M là phân số tối giản
tìm số tự nhiên n để 8n+41/ 4n+3 là phân số tối giản
Tìm số tự nhiên n. Để giá trị của phân số: C = (8n + 193)/(4n + 3) là một số tự nhiên
tìm số tự nhiên n để phân số A = 8n+193/4n+3 có giá trị là số tự nhiên
\(\Leftrightarrow4n+3\in\left\{11;17\right\}\)
=>4n=8
hay n=2
cho a=8n+193 và b=4n+3 với n là số tự nhiên tìm số tự nhiên n để a và b nguyên tố cùng nhau
tìm số TN n để phân số 8n+193/4n+3 có giá trị là số tự nhiên
8n+193/4n+3=2(4n+3)+187/4n+3=2+187/4n+3
Để p/s trên E Z thì 187 chia het cho 4n+3
=>4n+3 E Ư(187)
=>...( tự làm)
cho B=\(\frac{8n+193}{4n+3}\)
a)tìm n để B là phân số
b)tìm n để B là số tự nhiên
c)tìm n để B là phân số tối giản
d)với n=? sao cho 150<B<170 thì B rút gọn được