Những câu hỏi liên quan
TH
Xem chi tiết
DY
Xem chi tiết
AN
8 tháng 2 2017 lúc 21:06

Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)

Ta có:

\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)

Dấu = xảy ra khi x = y # 0

Bình luận (0)
TM
8 tháng 2 2017 lúc 21:08

\(\frac{x}{y}+\frac{y}{x}\ge2\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng!

Bình luận (0)
H24
8 tháng 2 2017 lúc 22:01

Thêm phát nữa cho vui

\(Hai.so.duong:\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\frac{y}{x}}=2\\ \)

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 6 2022 lúc 10:48

\(\dfrac{x}{y}+\dfrac{y}{x}>2\)

\(\Leftrightarrow x^2+y^2>2xy\)

\(\Leftrightarrow\left(x-y\right)^2>0\)(luôn đúng)

Bình luận (0)
H24
Xem chi tiết
NN
2 tháng 9 2017 lúc 20:12

Cái này là BĐT Schwarz nha bạn

Bình luận (0)
OK
13 tháng 1 2019 lúc 12:37

+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:

x+x+y+z≥44√x.x.y.z

=> 2x + y + z ≥44√x.x.y.z                  (1)

Với 4 số dương 1x ;1x ;1y ;1z  ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z     (2)

Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16

=> 12x+y+z ≤116 .(2x +1y +1z ) (*)

Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z )   (**)

1x+y+2z ≤116 .(1x +1y +2z )                           (***)

Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1

=> đpcm

Bình luận (0)
KN
13 tháng 11 2019 lúc 21:54

Áp dụng BĐT Cauchy- schwarz:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

(Dấu "="\(\Leftrightarrow x=y=z\))

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
GL
Xem chi tiết
PB
Xem chi tiết
CT
27 tháng 10 2018 lúc 8:56

Đáp án D

Bình luận (0)
AA
Xem chi tiết
LD
30 tháng 4 2019 lúc 17:22

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) là bất đẳng thức đúng.

Vậy ta có đpcm. Dấu "=" khi \(x=y\)

Bình luận (0)
VB
Xem chi tiết
H24
21 tháng 7 2015 lúc 19:25

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)

=> (x + y)2 = xy

Vì (x + y)2 >= 0 (1)

Mà xy < 0 (vì x, y trái dấu) (20

Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.

Cho **** nha

Bình luận (0)