1,tìm x,y,z biết:
a,3.(x-1)+2.(y-3)2+(z+2)2=0
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 2: Tìm x, y, z biết
a, x - 1 / 1 = y - 2 / 2 = z - 3 / 3 và x + y + z = 24
b, x + 1 / 2 = y - 3 / -1= z + 5 / 3 và x + 2y + 3z + 23 = 0
tìm x,y,z biết:(x-1/2) (y+1/3) (z-2)=0 và x+2=y+3=z+4
1.Tìm a,b,c,d,e\(\inℤ\) biết a + b + c + d + e = 0 và a + b = c + d = d + e = 2
2.Tìm x,y,z\(\inℤ\) biết :
a) x + y + z = 0, x + y = 3, y + z = -1
b) x + y = 3, y + z = 1, z + x = -2
tìm x,y,z biết
(x-1/2) * (y+1/3) * ( z-2) =0 và x+2 = y+3 = z+4
Tìm x,y,z biết : (x - 1/3) . (y - 1/2) . (z - 5) = 0 và x+2 = y + 1 = z + 3
Tìm x,y,z biết rằng (x -1/5)(y +1/2)(z -3) =0 và x +1 = y + 2 = z +3
\(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
=> Có 3 trường hợp
1) x - 1/5 = 0 => x = 1/5
2) y + 1/2 = 0 => y = -1/2
3) z - 3 = 0 => z = 3
Ta có :
Với x = 1/5
=> 1/5 + 1 = y + 2 = z + 3
=> y = -4/5 ; z = -9/5
Với y = -1/2
=> x + 1 = -1/2 + 2 = z + 3
=> x = 1/2 ; z = -3/2
Với z = 3
=> x + 1 = y + 2 = 3 + 3
=> x = 5 ; y = 4
tìm x,y,z biết rằng :
[x-1/2] [y+1/3] [z-2] = 0 và x+2=y+3=z+4
\(\left|x-\frac{1}{2}\right|\left|y+\frac{1}{3}\right|\left|z-2\right|=0\)
Vì \(\left|x-\frac{1}{2}\right|;\left|y+\frac{1}{3}\right|;\left|z-2\right|\)luôn lớn hon hoặc bằng 0
=> x-1/2=0 ; y+1/3=0 ; z-2=0
=> x=1/2 ; y=-1/3 ; z=2
1,tìm x,y,z biết:
a,3.(x-1)+2.(y-3)2+(z+2)2=0
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cũng dễ thôi