Biểu thức vi-ét
x1^2- x2^2=
x1^3- x2^3=
x1^4- x2^4=
x1/x2+ x2/x1=
Giúp mình với
Gọi x1 x2 là nghiệm của pt: (m-1)x^2-2mx+m-4=0. chứng minh rắng biểu thức A=3.(x1+x2)+2.x1.x2-8 ko phuộc thuộc giá trị m.
mình làm tới phần hệ thức Vi-ét rồi nhma bước tiếp theo rút m ra mik ko biết làm. Mn giúp mik với
\(\left(m-1\right)x^2-2mx+m-4=0\)
Theo Vi - ét , ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-4}{m-1}\end{matrix}\right.\)
Ta có :
\(A=3\left(x_1+x_2\right)+2x_1x_2-8\)
\(=3\left(\dfrac{2m}{m-1}\right)+2\left(\dfrac{m-4}{m-1}\right)-8\)
\(=\dfrac{6m}{m-1}+\dfrac{2m-8}{m-1}-8\)
\(=\dfrac{6m+2m-8}{m-1}-8\)
\(=\dfrac{8m-8}{m-1}-8\)
\(=\dfrac{8\left(m-1\right)}{m-1}-8\)
\(=8-8\)
\(=0\)
Vậy biểu thức A không phụ thuộc giá trị m
Nếu phương trình sau:x^2-2x-1=0 có 2 nghiệm x1,x2(x1<x2) thì hãy tính giá trị các đại lượng sau mà ko giải PT(bài này làm theo định lí Vi-et)
1.((x1^2+2)/x1)+((x2^2+2)/x2)
2.(x2/(x2^2-3))+(x1/(x1^2-3))
3.(x1^2/(x1.x2^2-1))+(x2^2/(x1^2.x2-1))
4.(x1/(3.x1.x2^2-1)+(x2/3.x1^2.x2-1)
5.(1/x1)-(1/x2)
6.(x1/(x2-1))+(x2/(x1-1))
7.((3x1-7)/x2)-((3x2-7)/x1)
Mọi người giúp mình với
Nếu phương trình sau:x^2-2x-1=0 có 2 nghiệm x1,x2(x1<x2) thì hãy tính giá trị các đại lượng sau mà ko giải PT(bài này làm theo định lí Vi-et)
1.((x1^2+2)/x1)+((x2^2+2)/x2)
2.(x2/(x2^2-3))+(x1/(x1^2-3))
3.(x1^2/(x1.x2^2-1))+(x2^2/(x1^2.x2-1))
4.(x1/(3.x1.x2^2-1)+(x2/3.x1^2.x2-1)
5.(1/x1)-(1/x2)
6.(x1/(x2-1))+(x2/(x1-1))
7.((3x1-7)/x2)-((3x2-7)/x1)
Mọi người giúp mình với
giả sử x1,x2 là 2 nghiệm của phương trình: x^2 - 8x 6 =0
tính :
a, D= x1^4 - x2^4
b, E= x1^4 x2^4
c, F= 3/x1^2 3/x2^2
d, G= x1.(4- x2^2) x2(4 - x1^2)
e, H= x1^6 x2^6
mn giải giúp e với ạ.cảm ơn
giả sử x1,x2 là 2 nghiệm của phương trình: x^2 - 8x + 6 =0
tính : a, D= x1^4 - x2^4
b, E= x1^4 + x2^4
c, F= 3/x1^2 + 3/x2^2
d, G= x1.(4- x2^2) + x2(4 - x1^2)
e, H= x1^6 + x2^6
mn giải giúp e với ạ.cảm ơn
a: \(\left\{{}\begin{matrix}x_1+x_2=8\\x_1x_2=6\end{matrix}\right.\)
\(D=x_1^4-x_2^4=\left(x_1+x_2\right)\left(x_1-x_2\right)\left(x_1^2+x_2^2\right)\)
\(=8\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\cdot\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=8\cdot\left[8^2-2\cdot6\right]\cdot\sqrt{8^2-4\cdot6}\)
\(=8\cdot52\cdot2\sqrt{10}=832\sqrt{10}\)
b: \(E=\left(x_1^2+x_2^2\right)^2-2x_1^2\cdot x_2^2\)
\(=52^2-2\cdot\left(x_1\cdot x_2\right)^2=52^2-2\cdot6^2=2632\)
c: \(F=\dfrac{3x_2^2+3x_1^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{3\cdot52}{6^2}=\dfrac{13}{3}\)
(X1+1)bình × x2 +(x2+1)bình × x1 +16=0
Tìm m để phương trình có hai nghiệm x1; x2 thoả
Hệ thức vi ét
X1+x2 = -b phần a = 2m +2
X1 ×x2 = c phần a = m-5
cho x1 x2 là nghiệm của pt 2x^2 - 11x +13 = 0 ko tính nghiệm, hãy tính. A= x1^3 + x2^3. B=x1^4 + x2^4. C= x1^4 - x2^4. D= x1//x2 . (1 - x2^2) + x2//x1. giúp với
cho mình hỏi công thức suy ra của \(\dfrac{x1}{x2}\) +\(\dfrac{x2}{x1}\) ra cái j
định lí vi ét á
\(=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\)
Dùng định lý Vi – ét, hãy chứng tỏ rằng nếu tam thức a x 2 + bx + c có hai nghiệm x 1 , x 2 thì nó phân tích được thành a x 2 + bx + c = a(x - x 1 )(x - x 2 )
Phân tích các tam thức sau thành tích:
5 x 2 - (1 + 2 3 )x - 3 + 3