CMR với mọi số tự nhiên n thì (n+3)(n+6) chia hết cho 2
cmr: với mọi số tự nhiên N thì tích (n+3)(n+6) chia hết cho 2
toán lớp 6 chứ
Nếu n=2k(kEN)
thì (n+3)(n+6)=(2k+3)(2k+6)=(2k)(2k+6)+3(2k+6)=4k^2+12k+6k+18=4k^2+18k+18(chia hết cho 2)
Nếu n=2k+1(kEN)
thì (n+3)(n+6)=(2k+1+3)(2k+1+6)=(2k+4)(2k+7)=(2k)(2k+7)+4(2k+7)=4k^2+14k+8k+14=4k^2+22k+14(chia hết cho 2)
Vậy với mọi nEN thì (n+3)(n+6) chia hết cho 2
Đây là toán lớp 6 mà ? đúng không ? sao mà bạn lại ghi là toán lớp 2 thế ? bạn có nhầm ở đâu ko đó ????
cmr: với mọi số tự nhiên N thì tích (n+3)(9n+6) chia hết cho 2
ai tic gium minh lai bi tru diem hoi dap nua roi
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
CMR : với mọi số tự nhiên n thì n^2 + n + 6 không chia hết cho 5
n2+n+6
= n(n+1)+6
= chẵn + chẵn
= chẵn -> ko chia hết cho 5
=> n2+n+6 ko chia hết cho 5
=> đpcm
'CMR với mọi số tự nhiên n thì n^2 + n + 6 không chia hết cho 5.'
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
1 + 1 =
em can gap!!!
Nhanh e k cho
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
CMR với mọi số tự nhiên n thì n2+n+6 không chia hết cho 5