Những câu hỏi liên quan
LS
Xem chi tiết
HH
29 tháng 5 2017 lúc 21:46

Có: \(\hept{\begin{cases}2x^2-xy-y^2=P\\x^2+2xy+3y^2=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2-4xy-4y^2=4P\\Px^2+2xy+3Py^2=4P\end{cases}}\)

\(\Leftrightarrow8x^2-4xy-4y^2-Px^2-2Pxy-3Py^2=0\)

\(\Leftrightarrow\left(8-P\right)x^2-xy\left(4+2P\right)-y^2\left(4+3P\right)=0\)

* Với \(y=0\)

\(\Rightarrow\left(8-P\right)x^2=0\Rightarrow\orbr{\begin{cases}8-P=0\\x=0\end{cases}}\Rightarrow\orbr{\begin{cases}P=8\\P=0\end{cases}}\)

* Với \(y\ne0\), đặt \(t=\frac{x}{y}\)

\(pt\Leftrightarrow\left(8-P\right)t^2-\left(4+2P\right)t-\left(4+3P\right)=0\)

   - Nếu \(P=8\Rightarrow t=-\frac{7}{5}\)

   - Nếu \(P\ne8\Rightarrow\)pt có nghiệm \(\Leftrightarrow\Delta\ge0\Rightarrow\left(4+2P\right)^2-4\left(8-P\right)\left(4+3P\right)\ge0\)

\(\Leftrightarrow16+8P+4P^2-4\left(32-3P^2+20P\right)\ge0\)

\(\Leftrightarrow-8P^2+96P+144\ge0\)

\(\Leftrightarrow6-3\sqrt{6}\le P\le6+3\sqrt{6}\)

Vậy \(MinP=6-3\sqrt{6};MaxP=6+3\sqrt{6}\)

Bình luận (0)


⇒ 8 − P x
2 = 0⇒ 8 − P = 0
x = 0 ⇒ P = 8
P = 0
* Với y ≠ 0, đặt t =
y
x
pt⇔ 8 − P t
2 − 4 + 2P t − 4 + 3P = 0
   - Nếu P = 8⇒t = −
5
7
   - Nếu P ≠ 8⇒pt có nghiệm ⇔Δ ≥ 0⇒ 4 + 2P
2 − 4 8 − P 4 + 3P ≥ 0
⇔16 + 8P + 4P
2 − 4 32 − 3P
2
+ 20P ≥ 0
⇔− 8P
2
+ 96P + 144 ≥ 0
⇔6 − 3 6 ≤ P ≤ 6 + 3 6
Vậy MinP = 6 − 3 6 ;MaxP = 6 + 3 6

Bình luận (0)
LD
Xem chi tiết
TN
30 tháng 5 2017 lúc 22:53

Ta có: \(\frac{P}{4}=\frac{2x^2-xy-y^2}{x^2+2xy+3y^2}\)

Xét x=0 =>...

Xét x#0 chia cả tử và mẫu cho x2 rồi đặt \(t=\frac{y}{x}\)

Delta=....

Bình luận (0)
PA
28 tháng 9 2017 lúc 22:07

bn giải lại đc ko ạ

Bình luận (0)
DN
Xem chi tiết
PQ
Xem chi tiết
YN
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
MD
Xem chi tiết
MD
8 tháng 7 2016 lúc 9:09

Giải PT: \(x^2+3y^2+2xy-8x-16y+23=0\)

\(\Leftrightarrow x^2+y^2+16+2xy-8x-8y+2y^2-8y+7=0\)

\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y^2-4y+4\right)-1=0\)

\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y-2\right)^2-1=0\)

\(\Rightarrow\left(x+y-4\right)^2=-2\left(y-2\right)^2+1\le1\)

Dấu "=" xảy ra khi : \(-2\left(y-2\right)^2=0\Rightarrow y=2\)

\(\Rightarrow\)\(\text{│}x+y-4\text{│}\le1\)

\(\Rightarrow-1\le x+y-4\le1\)

\(\Rightarrow3\le x+y\le5\)

Vậy Bmin=3 khi y=2;x=1

       Bmax=5 khi y=2;x=3

Bình luận (0)
UN
Xem chi tiết
KT
28 tháng 4 2019 lúc 14:20

mk co nen nghe ban than da tung phan boi mk ko... 

Bình luận (0)