Cho: a + b + c =0. CMR: ab + bc + ca ≤ 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c thỏa mãn: a+b+c=0. CMR: ab+bc+ca<=0
cho a,b,c>0 và 1/ab+1/bc+1/ca>=1. cmr: a/bc+b/ca+c/ab>=1
Cho a, b, c thỏa mãn a + b + c = 0
CMR: ab + bc + ca ≤ 0
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)Ta có: \(a^2+b^2+c^2\ge0\) .Dấu "=" xảy ra \(\Leftrightarrow a=b=c=0\)
Suy ra \(ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\le-\dfrac{0}{2}=0\)
Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=0\Leftrightarrow a=b=c=0\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
cho 2≥ a, b, c ≥0 và a+b+c=3. CMR: ab+bc+ca≥2
Lời giải:
Do $a,b,c\leq 2$ nên:
$(a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc+4(a+b+c)-2(ab+bc+ac)-8\leq 0$
$\Leftrightarrow abc+4-2(ab+bc+ac)\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq abc+4\geq 4$ (do $abc\geq 0$)
$\Rightarrow ab+bc+ac\geq 2$ (đpcm)
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
CMR √a+√b+√c>=ab+bc+caa+b+c>=ab+bc+ca vs a, b, c >0
cho a b c khác 0 và 1/a+1/b+1/c=0 cmr 1/ab+1/bc+1/ca nhỏ hơn hoặc bằng 0
Cho a b c thỏa mãn a+b+c=0 CMR ab+bc+ca < hoặc = 0
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+\left(2ab+2bc+2ac\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)
Vì \(a^2+b^2+c^2\ge0\)
Nên \(-\left(2ab+2bc+2ac\right)\ge0\)
\(\Rightarrow\)\(2ab+2bc+2ac\le0\)
\(\Rightarrow\)\(2\left(ab+bc+ac\right)\le0\)
\(\Rightarrow\)\(ab+bc+ac\le0\) ( đpcm )
Công thức lớp 8 chứ ko phải lớp 6 nhé
Chúc bạn học tốt ~
cm bđt ab+bc+ca \(\le\)\(\frac{\left(a+b+c\right)^2}{3}\)(biến đổi tương đương )
\(\Rightarrow\)ab+bc+ca \(\le\frac{0^2}{3}=0\)-đpcm