Những câu hỏi liên quan
H24
Xem chi tiết
LR
9 tháng 2 2016 lúc 7:41

  x^2+5y^2-4xy+10x-22y+|x+y+z|+26=0 
<=>x^2-2x(2y-5)+4y^2-20y+25+y^2-2y+1+|x... 
<=>x^2-2x(2y-5)+(2y-5)^2+(y-1)^2+|x+y+z... 
<=>(x-2y+5)^2+(y-1)^2+|x+y+z|=0 
<=>x-2y+5=0 va y-1 va x+y+z=0 
<=>x=2y-5 y=1 z=-x-y 
<=>x=2-5=-3 y=1 z=3-1=2

Bình luận (0)
TN
Xem chi tiết
NH
4 tháng 7 2015 lúc 13:41

tìm x,y mà lại lòi đâu ra z vậy??? bạn coi lại đề đi nào

Bình luận (0)
TA
Xem chi tiết
LL
6 tháng 10 2021 lúc 18:35

\(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)

\(\Leftrightarrow\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\\x+y+z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\\z=2\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết
AP
Xem chi tiết
PL
20 tháng 1 2020 lúc 10:11

bạn làm được chưa vậy nếu làm được thì cho mình xin cách giải với!!!!

Bình luận (0)
 Khách vãng lai đã xóa
CP
Xem chi tiết
NL
19 tháng 9 2021 lúc 16:29

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
NN
Xem chi tiết
HN
Xem chi tiết
MT
22 tháng 6 2015 lúc 18:21

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2(z+1)2=0

=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

 

Bình luận (0)
H24
21 tháng 3 2018 lúc 21:16

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)

            hoặc \(y-3=0\Leftrightarrow y=3\)

            hoặc \(z+1=0\Leftrightarrow z=-1\)

Bình luận (0)
NK
Xem chi tiết
NL
10 tháng 10 2020 lúc 23:59

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 10 2020 lúc 23:59

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa