Cho a,b,c thuộc Z.Chứng minh rằng nếu 3a+4b+5c chia hết cho 11 thì9a+b+4c cũng chia hết cho 11.
tìm số a thuộc Z
2a-7 chia hết cho a-1 (a khác 1)
3a+4chia hết cho a-3 (a khác 3)
bài 2: cho a,b,c thuộc Z. chứng minh nếu 3a+4b+5c chia hết 11 thì 9a+b+4c cũng chia hết 11
mk làm phụ mấy câu thôi
a)2a-7 chia hết cho a-1
2a-2-5 chia hết cho a-1
2(a-1)-5 chia hết cho a-1
=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}
=>aE{2;0;6;-4}
b)3a+4 chia hết cho a-3
3a-9+13 chia hết cho a-3
3(a-3)+13 chia hết cho a-3
=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}
=>aE{4;2;16;-10}
Chứng minh rằng :Nếu 3a+4b+5c chia hết cho 11 với giá trị tự nhiên nào đó của a,b,c thì biểu thức 9a+b+4c với giá trị cũng chia hết cho 11
9a + b + 4c = 3(3a + 4b + 5c) - 11(b + c) = 3*11*N - 11(b + c) = 11*(3*N - b - c) chia hết cho 11
9a+b+4c=3(3a+4b+5c)-11(b+c=3*11*N-11(b-c)=11*(3*N-b-c) chia het co 11
lam dung k minh ngay nhe
Chứng minh rằng : Nếu 3a+4b+5c chia hết cho 11 với giá trị tự nhiên nào đó của a, b, c thì biểu thức 9a + b + 4c với giá trị đó của a, b,c cũng chia hết cho 11.
Sáng nay làm minh bỏ câu này Bai6 đúng ko
đúng trong đề cương
Cho các số nguyên a , b , c. Chứng minh rằng : Nếu 3a + 4b + 5c chia hết cho 11 thì 12a + 5b - 2c cũng chia hết cho 11
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chép ở đâu z bạn o0o đồ khùng o0o
tớ bít nè chắc ở SKTS_BFON
chép nhận tk đúng ko
Cho các số nguyên a, b, c. Chứng minh rằng : Nếu 3a + 4b + 5c chia hết cho 11 thì 12a + 5b - 2c cũng chia hết cho 11
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chúc năm mới hạnh phúc. k nha.
cmr nếu 3a+4b+5c chia hết cho11 thì 9a+b+4c cũng chia hết cho 11
3a + 4b + 5c \(⋮\) 11
\(\Rightarrow\)3.(3a + 4b + 5c) = 9a + 12b + 15c \(⋮\) 11
\(\Rightarrow\) (9a + 12b + 15c) - (11b + 11c) = 9a + b + 4c \(⋮\)11
Ta có: \(\left(3a+4b+5c\right)⋮11\)
\(\Rightarrow3\left(3a+4b+5c\right)⋮11\)(1)
Ta lại có: \(11\left(b+c\right)⋮11\forall b,c\)(2)
Từ (1) và (2) suy ra \(3\left(3a+4b+5c\right)-11\left(b+c\right)⋮11\)
hay \(9a+b+4c⋮11\)(đpcm)
☘ Ta có 3a + 4b + 5c ⋮ 11
⇒ 3(3a + 4b + 5c) ⋮ 11
3(3a + 4b + 5c)
= (9a + 12b + 15c) ⋮ 11
☘ 11b + 11c ⋮ 11
⇒ (9a + 12b + 15c) - (11b + 11c)
= 9a + b + 4c
Mà (9a + 12b + 15c) ⋮ 11
11b + 11c ⋮ 11
Nên (9a + 12b + 15c) - (11b + 11c) = 9a + b + 4c ⋮ 11
➤ 9a + b + 4c ⋮ 11
Chứng tỏ rằng nếu 3a+ 4b+5c chia hết cho 11 thì 9a + b+4c chia hết cho 11
Chứng minh rằng:Nếu 3a+4b+5c chia hết cho 11 với giá trị tự nhiên nào đó của a,b,c thì biểu thức 9a+b+4c với các giá trị đó của a,b,c cũng chia hết cho 11.
xét hiệu: 4.(9a+b+4c)-(3a+4b+5c)
rùi làm như bình thường ngọc nhé,hà phg đây
Nếu ( 3a + 4b + 5c ) chia hết cho 11 thì ( 9a + b + 4c ) chia hết cho 11
3a + 4b + 5c chia hết cho 11
---> 3.(3a + 4b + 5c) = 9a + 12b + 15c chia hết cho 11
---> (9a + 12b + 15c) - (11b + 11c) = 9a + b + 4c chia hết cho 11 (điều phải chứng minh)