Những câu hỏi liên quan
DV
Xem chi tiết
PQ
9 tháng 12 2018 lúc 10:30

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}+1-1\ge\left(a+b+1\right)2\sqrt{\left(ab\right)^2}+\frac{\left(2+1\right)^2}{a+b+1}-1\)

\(=2\left(a+b+1\right)+\frac{9}{a+b+1}-1\ge2\sqrt{ab}+1+2\sqrt{\frac{9\left(a+b+1\right)}{a+b+1}}-1\ge2+6=8\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=b^2\left(1\right)\\\frac{2}{a+b}=1\left(2\right)\\a+b+1=\frac{9}{a+b+1}\left(3\right)\end{cases}}\)

pt \(\left(1\right)\)\(\Leftrightarrow\)\(a=b\) ( vì a, b > 0 ) 

pt \(\left(2\right)\)\(\Leftrightarrow\)\(a=b=1\)

pt \(\left(3\right)\)\(\Leftrightarrow\)\(\left(a+b+1\right)^2=9\)\(\Leftrightarrow\)\(a+b+1=3\) ( đúng vì \(a=b=1\) ) 

Vậy GTNN của \(A\) là \(8\) khi \(a=b=1\)

Chúc bạn học tốt ~ 

Bình luận (0)
NA
Xem chi tiết
NT
20 tháng 8 2018 lúc 14:41

câu hỏi ko tl cx thấy xàm xàm xàm xmà

Bình luận (0)
H24
Xem chi tiết
EG
Xem chi tiết
NT
25 tháng 12 2020 lúc 16:05

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

Bình luận (0)
 Khách vãng lai đã xóa
AK
Xem chi tiết
PN
Xem chi tiết
LG
Xem chi tiết
PN
11 tháng 7 2020 lúc 22:20

em mới lớp 7 nên không rành lắm về bất đẳng thức ạ :((

Ta có :\(a.b=1< =>a=\frac{1}{b}\)

Áp dụng bất đẳng thức : 

Ta được \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\ge\left(a+b+1\right)\left(2ab\right)+\frac{4}{a+b}\)

\(=\left(a+b+1\right).2+\frac{4}{a+b}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm 

\(2\left(a+b+1\right)+\frac{4}{a+b}\ge2\sqrt[2]{\left[2\left(a+b\right)+2\right].\frac{4}{a+b}}\)

\(=2\sqrt[2]{\frac{8\left(a+b\right)+8}{a+b}}=2\sqrt[2]{\frac{8\left(\frac{1}{b}+b\right)+8}{\frac{1}{b}+b}}\left(+\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 số không âm :

\(\frac{1}{b}+b\ge2\sqrt[2]{\frac{1}{b}.b}=2\)

Khi đó \(\left(+\right)< =>2\sqrt[2]{\frac{8.2+8}{2}}=2\sqrt[2]{12}=\sqrt[2]{48}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=1\)

Vậy \(Min_A=\sqrt{48}\)khi \(a=b=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NL
Xem chi tiết
LT
8 tháng 9 2019 lúc 12:48

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

Bình luận (0)
HL
17 tháng 4 2020 lúc 21:06

eeeee

Bình luận (0)
 Khách vãng lai đã xóa
ZN
17 tháng 4 2020 lúc 21:07

e cái gì là em bé à

Bình luận (0)
 Khách vãng lai đã xóa