Những câu hỏi liên quan
TT
Xem chi tiết
TT
Xem chi tiết
TT
1 tháng 4 2023 lúc 22:01

n^2 -m nha. ko phải n-m đâu. so sorry

 

Bình luận (0)
TX
Xem chi tiết
NS
11 tháng 9 2021 lúc 21:09
Tui chịu Nhé Bye Bye Các bạn
Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
DH
16 tháng 5 2021 lúc 15:27

Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)

\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)

\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)

Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)

do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).

Một cách tương tự ta cũng suy ra được \(n\ge m\).

Do đó \(m=n\).

Khi đó \(mn=m^2\)là một số chính phương. 

Bình luận (0)
 Khách vãng lai đã xóa
BM
16 tháng 5 2021 lúc 15:33

thank you

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HN
Xem chi tiết
LB
22 tháng 7 2016 lúc 20:15

câu 1 :

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Bình luận (0)
BT
22 tháng 7 2016 lúc 20:16

bài 1=7

Bình luận (0)
HT
Xem chi tiết
TN
19 tháng 12 2015 lúc 18:42

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Bình luận (0)
SL
Xem chi tiết
NH
Xem chi tiết