Những câu hỏi liên quan
TH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
CK
Xem chi tiết
TT
Xem chi tiết
AD
Xem chi tiết
VT
Xem chi tiết
NC
25 tháng 5 2020 lúc 11:41

Thêm điều kiện x; y; z > 0

B1: Tìm điểm rơi 

B2: Dùng cô - si

\(S=3\left(x^2+y^2\right)+z^2=\left(2x^2+\frac{1}{2}z^2\right)+\left(2y^2+\frac{1}{2}z^2\right)+\left(x^2+y^2\right)\)

\(\ge2.\sqrt{x^2z^2}+2.\sqrt{y^2z^2}+2.\sqrt{x^2y^2}\)

\(=2\left(xy+yz+zx\right)=2\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{\sqrt{5}};z=\frac{2}{\sqrt{5}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NL
21 tháng 11 2021 lúc 22:13

\(A=2\left(x^2+y^2\right)+\left(8y^2+\dfrac{1}{2}z^2\right)+\left(8x^2+\dfrac{1}{2}z^2\right)\ge2.2\sqrt{x^2y^2}+2\sqrt{8x^2.\dfrac{1}{2}z^2}+2.\sqrt{8x^2.\dfrac{1}{2}z^2}=4\left(xy+yz+zx\right)=4\)

\(A_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

Bình luận (1)